目录
迭代器
生成器:
首页 后端开发 Python教程 Python中生成器和迭代器的简单介绍(附示例)

Python中生成器和迭代器的简单介绍(附示例)

Sep 27, 2018 pm 02:53 PM
python

本篇文章给大家带来的内容是关于Python中生成器和迭代器的简单介绍(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

迭代器

在Python如果一个对象可被循环(遍历)该对象中每一个元素的过程叫做迭代。例如 ,字典、字符串、列表、元祖、集合等。他们可被迭代的原因是,都有一个共同的内置函数__iter__。通过执行内置对象的__next__函数,可以依次打印该对象的所有元素。例如 有一个列表,该列表存储了1-100的数值,但是我们只想打印前50的个元素。

flag=True
l=[x for x in range(1,101)]
l_iter = l.__iter__()
while flag:
    try:
       item=l_iter.__next__()
       if item==51:
           flag=False
           break
       else:
           print(item)
    except:
        break
登录后复制

在While循环中迭代器将一直循环执行__next__()函数,但迭代器本身并不知道它要迭代多少个元素。当执行到最后元素时,还会继续执行__next__()函数,但此时没有元素可被迭代了,由于迭代器找不到可被迭代元素,将会报错。因此我们在使用while循环时,配合异常捕获代码 try except一起使用,当迭代过程中出现异常,将会自动停止下一次循环。

生成器:

假设我们 有个需求,除第一个 和第二个元素外,其他元素依次为前两个元素之和。

我们可以这样写

def fib1(max):
    n,a,b=0,0,1
    while n<max:
        print(b)
        a,b=b,a+b
        n=n+1
    return &#39;done&#39;

a=fib1(5)
print(a)
登录后复制

输出结果

1
1
2
3
5
done
登录后复制

推导过程如图

用另外一种方法

def fib2(max):
    n,a,b=0,0,1
    while n<max:
        yield b
        a,b=b,a+b
        n=n+1
    return &#39;done&#39;
登录后复制

调用该函数

a=fib2(5)
print(a)
登录后复制

输出结果 1

此时我们发现,不能像之前那样直接显示结果,此时定义的fib并不是一个简单的函数,而是被改造成了生成器。如果想知道生成的结果可以依次执行__next__函数,但每次只返回一个结果,当没有更多的元素可以被迭代时将会抛出异常。

另外我们也可以使用for 循环和while(需配合try except使用)打印结果。

 a=fib2(5)
 for c in a:
    print(c)
登录后复制

显示输出结果 1 1 2 3 5.

使用生成器的好处:生成器是根据推导的过程计算下一个元素。再看前两个函数 fib1 和fib2 ,fib1在计算机中开辟一个固定的内存空间用于存储完整的计算结果,但如果我们想访问计算结果中的某一个元素,就需要先遍历整个计算结果,才能通过对象下标或者用for 循环和if条件判断 拿到我们想要的结果,这样做的可以实现我们的需求,但将会耗损较多的内存空间。而fib2则是依据推算过程计算出下一个元素,因此我们就可以在未创建完整对象之前获取我们想要的元素。从而降低内存消耗。

以上是Python中生成器和迭代器的简单介绍(附示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles