Python中json模块和pickle模块的简单介绍(附示例)
本篇文章给大家带来的内容是关于Python中json模块和pickle模块的简单介绍(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
Python中的json模块和pickle都是用于数据的序列化和反序列化,它们提供的方法也是一样的:dumps,dump,loads,load
dumps(obj):将对象序列化为str。
dump(obj, fp):将对象序列化为str,并存入文件中。
loads(s):将(序列化后的)字符串反序列化为Python对象。
load(fp):将文件中的(序列化后的)字符串反序列化为Python对象。
json和pickle模块虽然都是用于数据的序列化和反序列化,但它们之间还是有许多区别的,或者说各有各的优点和缺点:
通用性:json序列化后的字符串是通用的格式(普通的字符串)在中不同的平台和语言都可以识别,而pickle序列化后的字符串只有Python可以识别(Python专用序列化模块)
处理的数据类型:json能序列化的对象只是Python中基础数据类型,而pickle能序列化Python中所有的数据类型。
处理后的数据类型:json序列化后的字符串是文本类型(记事本打开文件后或者print打印后,你也能看懂其中的内容),而pickle序列化后的字符串是二进制流数据(记事本打开后或者print打印后就完全看不懂里面的内容了)。所以在进行文件操作时注意使用的是哪个模块,是否需要以b的格式打开。
使用空间:json需要的存储空间较小,pickle需要的存储空间较大。
以下是pickle文件操作的一个简单示例:
>>> import pickle >>> dic = {'a': 111, 'b': 222, 'c': 333} >>> f = open('D:/pk_file.pk', 'wb') >>> lst = [1, 2, 4, 5] >>> # 将字典对象和列表对象序列化,并存入文件,文件名后缀自定义为.pk >>> pickle.dump(dic, f) >>> pickle.dump(lst, f) >>> f.close() >>> # 将文件中的Python对象按写入顺序读取出来,且一次读取一个对象 >>> pk_f = open('D:/pk_file.pk', 'rb') >>> result = pickle.load(pk_f) >>> type(result) <class 'dict'> >>> result {'a': 111, 'b': 222, 'c': 333} >>> other_result = pickle.load(pk_f) >>> type(other_result) <class 'list'> >>> other_result [1, 2, 4, 5] >>>
以上就是本篇文章的全部内容,关于python更多精彩内容大家可以关注php中文网的Python视频教程和python文章教程栏目!!!
以上是Python中json模块和pickle模块的简单介绍(附示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
