python中numpy的array数据类型有哪些?(代码详解)
本篇文章给大家带来的内容是介绍python中numpy的array数据类型有哪些?(代码详解)。有一定的参考价值,有需要的朋友可以参考一下,希望对你们有所帮助。
import numpy as np #创建 # 创建一维数组 a = np.array([1, 2, 3]) print(a) ''' [1 2 3] ''' # 创建多维数组 b = np.array([(1, 2, 3), (4, 5, 6)]) print(b) ''' [[1 2 3] [4 5 6]] ''' # 创建等差一维数组 c = np.arange(1, 5, 0.5) print(c) ''' [1. 1.5 2. 2.5 3. 3.5 4. 4.5] ''' # 创建随机数数组 d = np.random.random((2, 2)) print(d) ''' [[0.65746941 0.09766114] [0.15024283 0.9212932 ]] ''' # 创建一个确定起始点和终止点和个数的等差一维数组 ##包含终止点 e = np.linspace(1, 2, 10) print(e) ''' [1. 1.11111111 1.22222222 1.33333333 1.44444444 1.55555556 1.66666667 1.77777778 1.88888889 2. ] ''' ##不包含终止点 f = np.linspace(1, 2, 10, endpoint=False) print(f) ''' [1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9] ''' #创建一个全为‘1’的 数组 g = np.ones([2,3]) print(g) ''' [[1. 1. 1.] [1. 1. 1.]] ''' #创建一个全为‘0’的数组 h = np.zeros([2,3]) print(h) ''' [[0. 0. 0.] [0. 0. 0.]] ''' #通过函数创建数组 k = np.fromfunction(lambda i,j :(i+1)*(j+1),(9,9)) print(k) ''' [[ 1. 2. 3. 4. 5. 6. 7. 8. 9.] [ 2. 4. 6. 8. 10. 12. 14. 16. 18.] [ 3. 6. 9. 12. 15. 18. 21. 24. 27.] [ 4. 8. 12. 16. 20. 24. 28. 32. 36.] [ 5. 10. 15. 20. 25. 30. 35. 40. 45.] [ 6. 12. 18. 24. 30. 36. 42. 48. 54.] [ 7. 14. 21. 28. 35. 42. 49. 56. 63.] [ 8. 16. 24. 32. 40. 48. 56. 64. 72.] [ 9. 18. 27. 36. 45. 54. 63. 72. 81.]] ''' ############## #获取数组的相关属性 a = np.array([(1,2,3),(4,5,6)]) print(a) ##获取数组的形状 print(a.shape) ''' (2, 3) 表示:该数组为2行3列 ''' ## 改变数组的形状 b = a.reshape(3,2) print(b) ''' [[1 2] [3 4] [5 6]] 将a数组的数据由2行3列变成3行2列得到b数组,但是a数组没有发生改变 ''' a.resize(3,2) print(a) ''' [[1 2] [3 4] [5 6]] a数组由2行3列变成3行2列,此时,a数组的形状发生了改变 ''' ############## #数组切片操作 a = np.array([(1,2,3),(4,5,6)]) print(a) ''' [[1 2 3] [4 5 6]] ''' ##获取数组的第二行 print(a[1]) ''' [4 5 6] ''' ##获取数组的前两行 print(a[0:2]) ''' [[1 2 3] [4 5 6]] ''' ##获取数组的前两列的值 print(a[:,[0,1]]) ''' [[1 2] [4 5]] ''' ##获取数组的第1行的前两列的值 print(a[0,[0,1]]) ''' [1 2] ''' ##遍历数组 for row in a: print(row) ''' [1 2 3] [4 5 6] ''' ####################### ##数组拼接 a = np.array([1,2,3]) b = np.array([4,5,6]) #垂直方向的拼接 c = np.vstack((a,b)) print(c) ''' [[1 2 3] [4 5 6]] ''' #竖直方向的拼接 d = np.hstack((a,b)) print(d) ''' [1 2 3 4 5 6] ''' ##################### ##数组的计算 a = np.array([1,2,3]) b = np.array([4,5,6]) #加法 c = a+b print(c) ''' [5 7 9] ''' #减法 d= a - b print(d) ''' [-3 -3 -3] ''' #乘法 e = a * b print(e) ''' [ 4 10 18] ''' #求和 f = np.array([(1,2,3),(4,5,6)]) print(f.sum()) ''' 21 ''' #按列求和 print(f.sum(axis=0)) ''' [5 7 9] ''' #按行求和 print(f.sum(axis=1)) ''' [ 6 15] ''' #最小值的值 print(f.min()) ''' 1 ''' #最小值的索引 print(f.argmin()) ''' 0 ''' #最大值的值 print(f.max()) ''' 6 ''' print(f.argmax()) ''' 5 ''' #平均值 print(f.mean()) ''' 3.5 ''' #方差 print(f.var()) ''' 2.9166666666666665 ''' #标准差 print(f.std()) ''' 1.707825127659933 ''' ############# # 线性代数的运算 #矩阵内积 np.dot() #行列式 np.linalg.det() # 逆矩阵 np.linalg.inv() #多元一次方程组求根 np.linalg.solve() #求特征值和特征向量 np.linalg.eig()
以上是python中numpy的array数据类型有哪些?(代码详解)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

在CentOS上更新PyTorch到最新版本,可以按照以下步骤进行:方法一:使用pip升级pip:首先确保你的pip是最新版本,因为旧版本的pip可能无法正确安装最新版本的PyTorch。pipinstall--upgradepip卸载旧版本的PyTorch(如果已安装):pipuninstalltorchtorchvisiontorchaudio安装最新
