django开发之mongodb的配置与使用
本篇文章给大家带来的内容是关于django开发之mongodb的配置与使用,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
今天整理了一下在django项目中如何使用mongodb, 环境如下:ubuntu18.04, django2.0.5, drf3.9, mongoengine0.16
第一步:在settings.py中配置mongodb和mysql,配置如下(可以同时使用mysql和mongodb):
DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # 数据库引擎 'NAME': 'django_test2', # 你要存储数据的库名,事先要创建之 'USER': 'root', # 数据库用户名 'PASSWORD': 'wyzane', # 密码 'HOST': 'localhost', # 主机 'PORT': '3306', # 数据库使用的端口 }, 'mongotest': { 'ENGINE': None, } } import mongoengine # 连接mongodb中数据库名称为mongotest5的数据库 conn = mongoengine.connect("mongotest")
第二步:向mongodb中插入数据
1、插入json类型数据
models.py: import mongoengine class StudentModel(mongoengine.Document): name = mongoengine.StringField(max_length=32) age = mongoengine.IntField() password = mongoengine.StringField(max_length=32) views.py: from rest_framework.views import APIView class FirstMongoView(APIView): def post(self, request): name = request.data["name"] age = request.data["age"] password = request.data["password"] StudentModel.objects.create(name=name, age=age, password=password) return Response(dict(msg="OK", code=10000))
插入数据格式为:
{ "name": "nihao", "age": 18, "password": "123456" }
2、插入含有list的json数据
models.py: import mongoengine class Student2Model(mongoengine.Document): name = mongoengine.StringField(max_length=32) # 用于存储list类型的数据 score = mongoengine.ListField() views.py: from rest_framework.views import APIView class FirstMongo2View(APIView): def post(self, request): name = request.data["name"] score = request.data["score"] Student2Model.objects.create(name=name, score=score) return Response(dict(msg="OK", code=10000))
插入数据格式为:
{ "name": "test", "score": [12, 13] }
3、插入含有dict和list的复杂json数据
models.py: import mongoengine class Student3Model(mongoengine.Document): name = mongoengine.StringField(max_length=32) # DictField用于存储字典类型的数据 score = mongoengine.DictField() views.py: from rest_framework.views import APIView class FirstMongo3View(APIView): def post(self, request): name = request.data["name"] score = request.data["score"] Student3Model.objects.create(name=name, score=score) return Response(dict(msg="OK", code=10000))
插入数据格式为:
{ "name": "test", "score": {"xiaoming": 12, "xiaoli": 13} } 或者: { "name": "test", "score": {"xiaoming": 12, "xiaoli": {"xiaozhao": 14}} } 或者: { "name": "test", "score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": 18}}} } 或者: { "name": "test", "score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": [12,13,14]}}} }
第三步:查询mongodb中的数据
1、查询并序列化复杂json数据
serializers.py: class StudentSerializer(serializers.Serializer): name = serializers.CharField() score = serializers.DictField() # 序列化复杂的json数据 # DictField与EmbeddedDocumentField类似,但是比EmbeddedDocumentField更灵活 views.py: class FirstMongo4View(APIView): def get(self, request): student_info = Student3Model.objects.all() # 增加过滤条件 # student_info = Student3Model.objects.filter(name="test1") ser = StudentSerializer(instance=student_info, many=True) return Response(dict(msg="OK", code="10000", data=ser.data))
2.序列化mongodb中含有嵌套关系的两个document
models.py: class AuthorModel(mongoengine.EmbeddedDocument): author_name = mongoengine.StringField(max_length=32) age = mongoengine.IntField() class BookModel(mongoengine.Document): book_name = mongoengine.StringField(max_length=64) publish = mongoengine.DateTimeField(default=datetime.datetime.utcnow()) words = mongoengine.IntField() author = mongoengine.EmbeddedDocumentField(AuthorModel) serializers.py: 序列化时注意与rest_framework的序列化中DictField()的区别 from rest_framework_mongoengine import serializers as s1 class AuthorSerializer(s1.DocumentSerializer): # DocumentSerializer继承自drf中的ModelSerializer,用于代替ModelSerializer序列化mongodb中的document. # 具体可以到官网上查看 class Meta: model = AuthorModel fields = ('author_name', 'age') class BookSerializer(s1.DocumentSerializer): author = AuthorSerializer() class Meta: model = BookModel fields = ('book_name', 'publish', 'words', 'author') AuthorSerializer还可以这样写: class AuthorSerializer(s1.EmbeddedDocumentSerializer): # EmbeddedDocumentSerializer继承了DocumentSerializer class Meta: model = AuthorModel fields = ('author_name', 'age') views.py: class BookView(APIView): def get(self, request): """ 查询数据 :param request: :return: """ books = BookModel.objects.all() ser = BookSerializer(instance=books, many=True) return Response(dict(msg="OK", code="10000", data=ser.data))
序列化mongodb中相关联的两个表时,如果序列化器继承自rest_framework中的Serializer和ModelSerializer,会抛出如下异常:
Django serialization to JSON error: 'MetaDict' object has no attribute 'concrete_model'
此时,序列化器需要继承自rest_framework_mongoengine的类,具体可以查看官网:
http://umutbozkurt.github.io/...
以上是django开发之mongodb的配置与使用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS系统下MongoDB高效备份策略详解本文将详细介绍在CentOS系统上实施MongoDB备份的多种策略,以确保数据安全和业务连续性。我们将涵盖手动备份、定时备份、自动化脚本备份以及Docker容器环境下的备份方法,并提供备份文件管理的最佳实践。手动备份:利用mongodump命令进行手动全量备份,例如:mongodump-hlocalhost:27017-u用户名-p密码-d数据库名称-o/备份目录此命令会将指定数据库的数据及元数据导出到指定的备份目录。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
