python中的yield关键字的用法介绍(代码示例)
本篇文章给大家带来的内容是关于python中的yield关键字的用法介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
yield是python的一个关键字,刚接触python的时候对这个关键字一知半解,掌握之后才发现这关键字有大用,本文将对yield的使用方法好好梳理一番。
1 使用yield创建生成器
在python中,生成器是一种可迭代对象,但可迭代对象不一定是生成器。
例如,list就是一个可迭代对象
>>> a = list(range(3)) >>> for i in a: print(i) 0 1 2 3
但是一个list对象所有的值都是放在内存中的,如果数据量非常大的话,内存就有可能不够用;这种情况下,就可以生成器,例如,python可以用“()”构建生成器对象:
>>> b = (x for x in range(3)) >>> for i in b: print(i) 0 1 2 >>> for i in b: print(i) >>>
生成器可以迭代的,并且数据实时生成,不会全部保存在内存中;值得注意的是,生成器只能读取一次,从上面的运行结果可以看到,第二次for循环输出的结果为空。
在实际编程中,如果一个函数需要产生一段序列化的数据,最简单的方法是将所有结果都放在一个list里返回,如果数据量很大的话,应该考虑用生成器来改写直接返回列表的函数(Effective Python, Item 16).
>>> def get_generator(): for i in range(3): print('gen ', i) yield i >>> c = get_generator() >>> c = get_generator() >>> for i in c: print(i) gen 0 0 gen 1 1 gen 2 2
由上面的代码可以看出,当调用get_generator函数时,并不会执行函数内部的代码,而是返回了一个迭代器对象,在用for循环进行迭代的时候,函数中的代码才会被执行。
除了使用for循环获得生成器返回的值,还可以使用next和send
>>> c = get_generator() >>> print(next(c)) gen 0 0 >>> print(next(c)) gen 1 1 >>> print(next(c)) gen 2 2 >>> print(next(c)) Traceback (most recent call last): File "<pyshell#59>", line 1, in <module> print(next(c)) StopIteration
>>> c = get_generator() >>> c.send(None) gen 0 0 >>> c.send(None) gen 1 1 >>> c.send(None) gen 2 2 >>> c.send(None) Traceback (most recent call last): File "<pyshell#66>", line 1, in <module> c.send(None) StopIteration
生成器的结果读取完后,会产生一个StopIteration的异常
2 coroutines中使用
yield一个常见的使用场景是通过yield来实现协程,已下面这个生产者消费者模型为例:
# import logging # import contextlib # def foobar(): # logging.debug('Some debug data') # logging.error('Some error data') # logging.debug('More debug data') # @contextlib.contextmanager # def debug_logging(level): # logger = logging.getLogger() # old_level = logger.getEffectiveLevel() # logger.setLevel(level) # try: # yield # finally: # logger.setLevel(old_level) # with debug_logging(logging.DEBUG): # print('inside context') # foobar() # print('outside context') # foobar() def consumer(): r = 'yield' while True: print('[CONSUMER] r is %s...' % r) #当下边语句执行时,先执行yield r,然后consumer暂停,此时赋值运算还未进行 #等到producer调用send()时,send()的参数作为yield r表达式的值赋给等号左边 n = yield r #yield表达式可以接收send()发出的参数 if not n: return # 这里会raise一个StopIteration print('[CONSUMER] Consuming %s...' % n) r = '200 OK' def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) #调用consumer生成器 print('[PRODUCER] Consumer return: %s' % r) c.send(None) c.close() c = consumer() produce(c)
[CONSUMER] r is yield... [PRODUCER] Producing 1... [CONSUMER] Consuming 1... [CONSUMER] r is 200 OK... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 2... [CONSUMER] Consuming 2... [CONSUMER] r is 200 OK... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 3... [CONSUMER] Consuming 3... [CONSUMER] r is 200 OK... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 4... [CONSUMER] Consuming 4... [CONSUMER] r is 200 OK... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 5... [CONSUMER] Consuming 5... [CONSUMER] r is 200 OK... [PRODUCER] Consumer return: 200 OK Traceback (most recent call last): File ".\foobar.py", line 51, in <module> produce(c) File ".\foobar.py", line 47, in produce c.send(None) StopIteration
在上面的例子中可以看到,yield表达式与send配合,可以起到交换数据的效果,
n = yield r r = c.send(n)
3 contextmanager中使用
另外一个比较有意思的使用场景是在contextmanager中,如下:
import logging import contextlib def foobar(): logging.debug('Some debug data') logging.error('Some error data') logging.debug('More debug data') @contextlib.contextmanager def debug_logging(level): logger = logging.getLogger() old_level = logger.getEffectiveLevel() logger.setLevel(level) try: yield #这里表示with块中的语句 finally: logger.setLevel(old_level) with debug_logging(logging.DEBUG): print('inside context') foobar() print('outside context') foobar()
inside context DEBUG:root:Some debug data ERROR:root:Some error data DEBUG:root:More debug data outside context ERROR:root:Some error data
在上面的代码中,通过使用上下文管理器(contextmanager)来临时提升了日志的等级,yield表示with块中的语句;
总结
yield表达式可以创建生成器,应该考虑使用生成器来改写直接返回list的函数;
由于生成器只能读取一次,因此使用for循环遍历的时候要格外注意;生成器读取完后继续读的话会raise一个StopIteration的异常,实际编程中可以使用这个异常来作为读取终止的判断依据;
yield一个常见的使用场景是实现协程;通过与send函数的配合,可以起到交换数据的效果;
yield还可以在contextmanager修饰的函数中表示with块中的语句
以上是python中的yield关键字的用法介绍(代码示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

直接通过 Navicat 查看 MongoDB 密码是不可能的,因为它以哈希值形式存储。取回丢失密码的方法:1. 重置密码;2. 检查配置文件(可能包含哈希值);3. 检查代码(可能硬编码密码)。

作为数据专业人员,您需要处理来自各种来源的大量数据。这可能会给数据管理和分析带来挑战。幸运的是,两项 AWS 服务可以提供帮助:AWS Glue 和 Amazon Athena。

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

问题:如何查看 Redis 服务器版本?使用命令行工具 redis-cli --version 查看已连接服务器的版本。使用 INFO server 命令查看服务器内部版本,需解析返回信息。在集群环境下,检查每个节点的版本一致性,可使用脚本自动化检查。使用脚本自动化查看版本,例如用 Python 脚本连接并打印版本信息。

启动 Redis 服务器的步骤包括:根据操作系统安装 Redis。通过 redis-server(Linux/macOS)或 redis-server.exe(Windows)启动 Redis 服务。使用 redis-cli ping(Linux/macOS)或 redis-cli.exe ping(Windows)命令检查服务状态。使用 Redis 客户端,如 redis-cli、Python 或 Node.js,访问服务器。

Navicat的密码安全性依赖于对称加密、密码强度和安全措施的结合。具体措施包括:采用SSL连接(前提是数据库服务器支持并正确配置证书)、定期更新Navicat、使用更安全的方式(如SSH隧道)、限制访问权限,最重要的是,绝不记录密码。
