首页 > 后端开发 > Python教程 > Python中数据预处理(代码)

Python中数据预处理(代码)

不言
发布: 2019-03-18 10:06:22
转载
8741 人浏览过

本篇文章给大家带来的内容是关于Python中数据预处理(代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

1、导入标准库
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
登录后复制

2、导入数据集

dataset = pd.read_csv('data (1).csv')  # read_csv:读取csv文件
#创建一个包含所有自变量的矩阵,及因变量的向量
#iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。
X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。
y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据
登录后复制

3、缺失数据

from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理
#Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])#拟合fit
X[:, 1:3] = imputer.transform(X[:, 1:3])
登录后复制
4、分类数据
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder_X=LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0])
onehotencoder=OneHotEncoder(categorical_features=[0])
X=onehotencoder.fit_transform(X).toarray()
#因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字
labelencoder_y=LabelEncoder()
y=labelencoder_y.fit_transform(y)
登录后复制

5、将数据集分为训练集和测试集

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
#X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量)
#训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重
#random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集
登录后复制
6、特征缩放
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化))
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放
X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test
登录后复制

7、数据预处理模板

(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放

以上是Python中数据预处理(代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:cnblogs.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
最新问题
python - ubuntu16.04 lxml的报错
来自于 1970-01-01 08:00:00
0
0
0
有办法在PHP里写Python吗?
来自于 1970-01-01 08:00:00
0
0
0
python scrapy爬虫错误
来自于 1970-01-01 08:00:00
0
0
0
centos7 编译安装 Python 3.5.1 失败
来自于 1970-01-01 08:00:00
0
0
0
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板