JavaScript深度优先遍历(DFS)和广度优先遍历(BFS)算法的介绍
本篇文章给大家带来的内容是关于JavaScript深度优先遍历(DFS)和广度优先遍历(BFS)算法的介绍,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
背景:在开发页面的时候,我们有时候会遇到这种需求:在页面某个dom节点中遍历,找到目标dom节点,我们正常做法是利用选择器document.getElementById(),document.getElementsByName()或者document.getElementsByTagName(),但在本文,我们从算法的角度去查找dom节点,同时理解一下深度优先遍历(DFS)和广度优先遍历(BFS)的原理。
准备
假设页面上的dom结构如下:
<div id="root"> <ul> <li> <a href=""> <img src="" alt=""> </a> </li> <li> <span></span> </li> <li> </li> </ul> <p></p> <button></button> </div>
让我们来把这个dom结构转化成树的样子
这样之后,dom结构似乎清楚了不少。
深度优先遍历(Depth-First Search)
该方法是以纵向的维度对dom树进行遍历,从一个dom节点开始,一直遍历其子节点,直到它的所有子节点都被遍历完毕之后在遍历它的兄弟节点。即如图所示(遍历顺序为红字锁标):
js实现该算法代码(递归版本):
function deepFirstSearch(node,nodeList) { if (node) { nodeList.push(node); var children = node.children; for (var i = 0; i < children.length; i++) //每次递归的时候将 需要遍历的节点 和 节点所存储的数组传下去 deepFirstSearch(children[i],nodeList); } return nodeList; }
非递归版本:
function deepFirstSearch(node) { var nodes = []; if (node != null) { var stack = []; stack.push(node); while (stack.length != 0) { var item = stack.pop(); nodes.push(item); var children = item.children; for (var i = children.length - 1; i >= 0; i--) stack.push(children[i]); } } return nodes; }
deepFirstSearch接受两个参数,第一个参数是需要遍历的节点,第二个是节点所存储的数组,并且返回遍历完之后的数组,该数组的元素顺序就是遍历顺序,调用方法:
let root = document.getElementById('root') deepTraversal(root,nodeList=[])
控制台输出结果
广度优先遍历(breadth-first traverse)
该方法是以横向的维度对dom树进行遍历,从该节点的第一个子节点开始,遍历其所有的兄弟节点,再遍历第一个节点的子节点,完成该遍历之后,暂时不深入,开始遍历其兄弟节点的子节点。即如图所示(遍历顺序为红字锁标):
js实现算法代码(递归版本):
function breadthFirstSearch(node) { var nodes = []; var i = 0; if (!(node == null)) { nodes.push(node); breadthFirstSearch(node.nextElementSibling); node = nodes[i++]; breadthFirstSearch(node.firstElementChild); } return nodes; }
递归版本的BFS由于层级太深,会导致堆栈溢出:Maximum call stack size exceeded,但遍历的顺序依旧没有问题,可以在遍历过程中进行操作,不返回遍历数组即可。
非递归版本:
function breadthFirstSearch(node) { var nodes = []; if (node != null) { var queue = []; queue.unshift(node); while (queue.length != 0) { var item = queue.shift(); nodes.push(item); var children = item.children; for (var i = 0; i < children.length; i++) queue.push(children[i]); } } return nodes; }
控制台输出结果:
总结:BFS和DFS都是图的算法之一,本文所阐述的版本较为简单,为无向且非连通图,在日后会更新更多基于JavaScript的算法。
本篇文章到这里就已经全部结束了,更多其他精彩内容可以关注PHP中文网的JavaScript视频教程栏目!
以上是JavaScript深度优先遍历(DFS)和广度优先遍历(BFS)算法的介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

JavaScript教程:如何获取HTTP状态码,需要具体代码示例前言:在Web开发中,经常会涉及到与服务器进行数据交互的场景。在与服务器进行通信时,我们经常需要获取返回的HTTP状态码来判断操作是否成功,根据不同的状态码来进行相应的处理。本篇文章将教你如何使用JavaScript获取HTTP状态码,并提供一些实用的代码示例。使用XMLHttpRequest

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

写在前面&笔者的个人理解在自动驾驶系统当中,感知任务是整个自驾系统中至关重要的组成部分。感知任务的主要目标是使自动驾驶车辆能够理解和感知周围的环境元素,如行驶在路上的车辆、路旁的行人、行驶过程中遇到的障碍物、路上的交通标志等,从而帮助下游模块做出正确合理的决策和行为。在一辆具备自动驾驶功能的车辆中,通常会配备不同类型的信息采集传感器,如环视相机传感器、激光雷达传感器以及毫米波雷达传感器等等,从而确保自动驾驶车辆能够准确感知和理解周围环境要素,使自动驾驶车辆在自主行驶的过程中能够做出正确的决断。目
