网站系统的缓存机制的建立和优化
讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。
我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。
最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。
一、 MySQL数据库内部缓存使用
MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。
1. 建立恰当的索引
最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等操作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询操作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。
2. 数据库连接线程池缓存
如果,每一个数据库操作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。
其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。
3. Innodb缓存设置(innodb_buffer_pool_size)
innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。
4. 分库/分表/分区。
MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等操作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。
二、 MySQL数据库多台服务搭建
1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。
1. 建立MySQL主从,从库作为备份
这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。
2. MySQL读写分离,主库写,从库读。
两台数据库做读写分离,主库负责写入类的操作,从库负责读的操作。并且,如果主库发生故障,仍然不影响读的操作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。
3. 主主互备。
两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。
不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。
三、 在Web服务器和数据库之间建立缓存
实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。
1. 页面静态化
用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。
在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。
2. 单台内存缓存
通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value操作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。
内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。
3. 内存缓存集群
当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。
Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。
对于使用缓存服务的客户端来说,这一切是透明的。
内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。
4. 减少数据库“写”
上面的机制,都实现减少数据库的“读”的操作,但是,写的操作也是一个大的压力。写的操作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。
先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。
除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Redundant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。
5. NoSQL存储
不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。
这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。
国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。
6. 空节点查询问题
当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。
以上是网站系统的缓存机制的建立和优化的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

随着电商业务的蓬勃发展,推荐算法成为了各大电商平台竞争的关键之一。作为一门高效、高性能语言,Golang在实现电商推荐算法方面有着很大的优势。但是,在实现高效推荐算法的同时,缓存机制也是一个不可忽视的问题。本文将介绍如何在Golang中实现高效电商推荐算法的缓存机制。一、为什么需要缓存机制在电商推荐算法中,推荐结果的生成需要耗费大量的计算资源,对于高并发的电

在Web应用程序中,缓存通常是用来优化性能的重要手段。Django作为一款著名的Web框架,自然也提供了完善的缓存机制来帮助开发者进一步提高应用程序的性能。本文将对Django框架中的缓存机制进行详解,包括缓存的使用场景、建议的缓存策略、缓存的实现方式和使用方法等方面。希望对Django开发者或对缓存机制感兴趣的读者有所帮助。一、缓存的使用场景缓存的使用场景

MyBatis的缓存机制解析:一级缓存与二级缓存的区别与应用在MyBatis框架中,缓存是一个非常重要的特性,可以有效提升数据库操作的性能。其中,一级缓存和二级缓存是MyBatis中常用的两种缓存机制。本文将详细解析一级缓存与二级缓存的区别与应用,并提供具体的代码示例进行说明。一、一级缓存一级缓存也被称为本地缓存,它默认开启且不可关闭。一级缓存是SqlSes

java缓存机制有内存缓存、数据结构缓存、缓存框架、分布式缓存、缓存策略、缓存同步、缓存失效机制以及压缩和编码等。详细介绍:1、内存缓存,Java的内存管理机制会自动缓存经常使用的对象,以减少内存分配和垃圾回收的开销;2、数据结构缓存,Java内置的数据结构,如HashMap、LinkedList、HashSet等,具有高效的缓存机制,这些数据结构使用内部哈希表来存储元素等等。

阿里云缓存机制有阿里云Redis、阿里云Memcache、分布式缓存服务DSC、阿里云Table Store、CDN等。详细介绍:1、阿里云Redis:阿里云提供的分布式内存数据库,支持高速读写和数据持久化。通过将数据存储在内存中,可以提供低延迟的数据访问和高并发的处理能力;2、阿里云Memcache:阿里云提供的高速缓存系统等等。

MyBatis缓存机制详解:一文读懂缓存存储原理引言在使用MyBatis进行数据库访问时,缓存是一个非常重要的机制,能够有效减少对数据库的访问,提高系统性能。本文将详细介绍MyBatis的缓存机制,包括缓存的分类、存储原理和具体的代码示例。一、缓存的分类MyBatis的缓存主要分为一级缓存和二级缓存两种。一级缓存一级缓存是SqlSession级别的缓存,当在

Golang作为一门高效的编程语言,近年来受到越来越多开发者的欢迎,并在各种场景下被广泛应用。在广告平台场景中,为了实现精准的广告投放,需要对广告的选择、排序、过滤等流程进行快速的计算,以达到高效的广告投放目的。而为了优化这个流程,缓存机制成为了不可避免的一部分。一般而言,广告平台的流程大概如下:当用户在浏览网页时,广告平台通过各种方式收集到用户的信息,并通

HTML缓存机制大揭秘:必备的知识点,需要具体代码示例在Web开发中,性能一直是一个重要的考量因素。而HTML缓存机制是提升Web页面性能的关键之一。本文将揭秘HTML缓存机制的原理和实践技巧,并提供具体的代码示例。一、HTML缓存机制的原理Web页面访问过程中,浏览器通过HTTP协议请求服务器获取HTML页面。HTML缓存机制就是将HTML页面缓存在浏览器
