首页 后端开发 Python教程 python映射类型的相关介绍

python映射类型的相关介绍

Jun 14, 2019 pm 02:01 PM
dict python 映射

映射类型是一类可迭代的键-值数据项的组合,提供了存取数据项及其键和值的方法,在python3中,支持两种无序的映射类型:内置的dict和标准库中的collections.defaultdict类型。 

在python3.1后,还引入了一种有序的映射类型:collections.OrderedDict.

相关推荐:《python视频

python映射类型的相关介绍

特点:

1.只有可哈希运算的对象可用于映射类型中的键,因此,内置的固定的数据类型都可以用作映射类型中的键(内置固定的类型都可进行哈希运算),目前接触到的固定数据类型有:int、float、complex、bool、str、tuple、frozenset;

2.每个键相关联的值可以是任意对象;

3.映射类型也是可迭代的(iterable)。

4.映射类型可以使用比较操作符进行比较,可以使用成员关系符in/not in和内置len()函数。

1.dict(字典)

dict数据类型是一种无序的、可变的组合数据类型,其中包含0-n个键值对,键是指向可哈希运算的对象的引用,值可以指向任意对象的引用。由于键是可哈希运算的对象引用,因此保证了键的唯一性;由于dict是可变的,因此可以对dict进行数据项的添加和移除操作;由于dict是无序的,因此没有索引,也不能使用分片操作符进行操作。

字典的创建

1.dict()可以作为一个函数调用,此时创建一个空dict:

>>> dict()
{}
>>>
登录后复制

dict()中传入一个映射类型的参数时,将返回以该参数为基础的字典,如:

>>> d1 = {"key1":"value1","key2":"value2"}
>>> dict(d1)
{'key1': 'value1', 'key2': 'value2'}
>>>
登录后复制

dict() 还可以接受序列类型的参数,但是前提是序列中的每一个数据项本身是一个包含两个对象的序列,第一个用作键,第二个用作值,如:

>>> d1 = dict((("k1","v1"),("k2","v2")))   #使用元组创建
>>> d1
{'k1': 'v1', 'k2': 'v2'}
>>> 
>>> d1 = dict([("k1","v1"),("k2","v2")])   #使用序列创建
>>> d1
{'k1': 'v1', 'k2': 'v2'}
>>>
登录后复制

dict() 中还可以关键字参数进行创建,其中键作为关键字,值作为关键字的值,如:

>>> dict(id=1,name="zhangsan",age=23)
{'id': 1, 'name': 'zhangsan', 'age': 23}
>>>
登录后复制

注意:关键字必须为有效的python标识符

2.使用花括号创建dict,空{}会创建一个空的dict,非空dict由多个项组成,每一项由逗号分隔,其中每一项都使用K:V 的形式创建,如:

>>> dict2 = {"name":"kobe","age":33,"num":24}
>>> dict2
{'name': 'kobe', 'age': 33, 'num': 24}
>>>
登录后复制

3.使用字典内涵创建字典

defaultdict是dict的子类,它支持dict的所有的操作和方法。和dict的不同之处在于,如果dict中不包含某一个键,则通过dict[x]取值时出现KeyError异常,但是如果是defaultdict,则会创建一个新的项,键为该键,值为默认值。

2.collections.defaultdict(默认字典)

创建collections.defaultdict

创建collections.defaultdict时,通过collections.defaultdict(),根据参数可以有两种方式进行创建:

* 1.使用参数类型来创建:

>>> import collections
>>> cd1 = collections.defaultdict(int)
>>> cd2 = collections.defaultdict(list)
>>> cd3 = collections.defaultdict(str)
>>> cd1["x"]
0
>>> cd2["x"]
[]
>>> cd3["x"]
''
>>>
登录后复制

这里分别使用了int、list、str,他们的默认值分别为0,[],”

* 2.使用函数名来创建:

>>> def name():
    return 'zhangsan'
>>> cd4 = collections.defaultdict(name)
>>> cd4["x"]
'zhangsan'
>>>
登录后复制

通过这种方式,可以使默认字典的默认值更加灵活。

需要注意的是,collections.defaultdict()可以不传入参数或者传入None,但是如果这样,则不支持默认值,比如:

>>> cd5 = collections.defaultdict()
>>> cd5["x"]
Traceback (most recent call last):
  File "<pyshell#254>", line 1, in <module>
    cd5["x"]
KeyError: &#39;x&#39;
>>>
登录后复制

有了collections.defaultdict,可以代替dict中的get(k,v)和setdefault()方法了。

3.collections.OrderedDict

OrderedDict是dict子类,支持dict所有方法,记住了插入key的顺序。如果新条目覆盖现有条目,则原始插入位置保持不变。 删除条目并重新插入它将使其移至最后。

class collections.OrderedDict([items])
登录后复制

因为是有序的,所以只有当顺序也相同的时候,两个OrderedDict才相同。但是OrderedDict和普通dict相比较时,会忽略顺序。

from collections import OrderedDict
d = {&#39;banana&#39;: 3, &#39;apple&#39;: 4}
od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od2 = OrderedDict({&#39;apple&#39;: 4, &#39;banana&#39;: 3})
print(od1 == od2)
print(od1 == d)
登录后复制

运行结果

FalseTrue
登录后复制

3. 关键方法

OrderedDict.popitem(last=True)
登录后复制

普通dict的该方法不接受参数,只能将最后一个条目删除;OrderedDict比dict更为灵活,接受一个last参数:当last=True时和普通方法一样,符合LIFO顺序;当last=False时候,删除第一个元素,符合FIFO顺序。

from collections import OrderedDict
od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od1.popitem(False)
print(od1)
登录后复制

运行结果

OrderedDict([(&#39;apple&#39;, 4)])
登录后复制

4. 简单增强

OrderedDict只是保持了插入的顺序,当条目被修改时,顺序不会修改。

od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od1[&#39;banana&#39;] = 5print(od1)
登录后复制

运行结果

OrderedDict([(&#39;banana&#39;, 5), (&#39;apple&#39;, 4)])
登录后复制

但是有时候我们需要修改和插入时同样的效果,可以简单的增强一下,重写__setitem__()方法当修改时先删除该元素然后再插入。

class EnhancedOrderedDict(OrderedDict):
    def __setitem__(self, key, value):        
        if key in self:
           del self[key]
       OrderedDict.__setitem__(self, key, value)
登录后复制

测试

eod = EnhancedOrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})print(eod)
eod[&#39;banana&#39;] = 5print(eod)
登录后复制

运行结果

EnhancedOrderedDict([(&#39;banana&#39;, 3), (&#39;apple&#39;, 4)])
EnhancedOrderedDict([(&#39;apple&#39;, 4), (&#39;banana&#39;, 5)])
登录后复制

以上是python映射类型的相关介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上如何进行PyTorch模型训练 CentOS上如何进行PyTorch模型训练 Apr 14, 2025 pm 03:03 PM

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

CentOS下PyTorch版本怎么选 CentOS下PyTorch版本怎么选 Apr 14, 2025 pm 02:51 PM

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

See all articles