首页 后端开发 Python教程 r语言和python的详细对比

r语言和python的详细对比

Jun 15, 2019 pm 01:16 PM
python r语言

r语言和python的对比,两者各有千秋,究竟要学哪一个,可根据自己的实际需求来作出选择,当然,最好是两者都学。

相关推荐:《python视频

r语言和python的详细对比

01 开发目的

R语言

R是由统计学家开发的,它的出生就肩负着统计分析、绘图、数据挖掘的重要使命。因此在R的语言体系里,有非常多统计学的原理和知识。

如果你具备一些统计背景,R会令你使用各类model和复杂的公式时更加愉悦有爽感,因为你总能找到对应的package,并且几行代码就可以调用搞定。

Python

Python的创始人初衷,是为非专业程序员设计的一种开放型的语言。优雅,明确,简单,是它的标签。因此,总有人高唱「人生苦短,我用Python」。

数据分析、网络爬虫、编程开发、人工智能等,作为一门多功能的胶水语言,Python的使用目的和学习路径更加多样化。

02 适用人群

尽管都是数据科学界的当红炸子鸡,工具的选择会因为你的领域和你想解决的问题因人而异。

R语言

起初R在学术研究和调查工作中使用比较多,逐渐延伸至企业商业界。使用人群不一定需要计算机背景,统计、金融、经济、核电、环境、医疗、物流管理,乃至人文学科,都有R语言的立足之地。

同样,鉴于R 在数据探索、统计分析上,是一种更高效的独立数据分析工具,具备良好数理统计知识背景的人使用起来更加得心应手,自带base一R的基础模块、mle一极大似然估计模块、ts一时间序列分析模块、mva一多元统计分析模块等。

Python

相比R非标准的代码,Python作为出了名的语法简洁工具,对于一些稍有编程基础的人来说格外友好,可以减少在编程进程中的磕绊。

没有任何基础的编程小白一样可以上手Python,适用范围同样覆盖金融、医疗、管理、传播等各行各业。

如果你在数据分析之余,还需要与诸如Web应用程序相整合,或者需要和数据源的连接、读取,调用其他语言等,使用Python是更加方便的选择,「一站式解决」。

03 学习曲线

这是小白入门前最关心的问题之一,究竟哪个学起来更难?

实际上,由于不了解每个人的知识背景和学习成本,这个问题并不能做出非黑即白的绝对性答案。这也是为什么,各类论坛上R和Python的使用者关于入门难度总是各执一词。

R语言

开始学习R,了解了最基本知识和语言逻辑,入门不难。以及数理统计基础好的会越学越爽,相反,如果完全没有数理背景,会感觉到明显增幅的难度。

Python

Python看重可读性和易用性,它的学习曲线比较平缓。对于初级小白来讲,比较友好,但如果纵深学习以及拓展方向,还需要掌握大量package的知识和使用方法。

如果你真的需要定义对比二者学习曲线的难度,你需要首先明确,你的学习目的是什么。

04 行业选择&发展方向

网络上有很多R与Python人气对比的数据,综合来看,Python的排名更高,主要原因是R仅在数据科学的环境中使用,而Python作为一种通用语言,使用广泛。

R语言

应用R的场景:数据探索、统计分析、数据可视化

应用 R技能的职位:数据分析师、数据科学家、投资分析师、税务人员、管理人员、科研人员等等

发展方向:结合各行业的专业知识,做深度的业务数据处理与统计分析

Python

应用Python的场景:数据分析、网络爬虫、系统编程、图形处理、文本处理、数据库编程、网络编程、Web编程、数据库连接、人工智能、机器学习等

应用Python的职位:数据架构师、数据分析师、数据工程师、数据科学家、程序开发员等

发展方向:结合各行业的专业知识,做各类型or协作型工作

05 优缺点对比分析

来了!在具体的使用中,两个工具一定有各自的优劣势,各自的侧重点。明确哪一点对你最重要,是你选择的关键。

数据可视化 

字不如表,表不如图。R和可视化是绝配,一些必备的可视化软件包如ggplot2,ggvis,googleVis和rCharts,由于统计模型完善,细节设计精美,在R里能够使用一行或几行代码很快完成漂亮大气装X一百分的数据图,清楚看到数据的特征和走势。

Python也有一些不错的可视化库,诸如Matplotlib, Seaborn,Bokeh和Pygal,它同样可以完成和R一样精美的数据图,但需要你自己写代码去表达和定义,例如线形图、柱状图,横纵坐标的距离与比例,颜色的选择等等。

数据分析 

R包含更多的数据分析内建功能,可以直接使用summary内建函数,dataframe是R内置的结构。

Python中需要依靠第三方软件包,诸如statsmodels、pandas包,提供强大的数据分析功能。

数据结构 

R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。R的变量类型比较单一,在不同的包里变量类型是一样的。

Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(重复性、无序)、字典(Key-Value)等等。在不同的包里,也会有不同的表达来定义变量,例如在pandas包里用series表示列表,而在numpy包里列表的表达则使用array。

相比来说,Python更丰富的数据结构会提升学习成本,但运行更精准,速度也更快。

运行速度 

R的运行速度比较慢,在大样本的回归中,如使用不当就会出现内存不足的情况。通常,需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析。或者和其他大数据处理工具结合起来,例如spark。

Python虽然没有C的运行快,但与R相比,还是非常有优势的,可以直接处理上G的数据,并且在非常大的数据运算上的准确性也更好一些。

帮助文档与自学成本 

相比于使用人群更广泛的Python,R的帮助文档相对不够细致和完善,通常附带的栗子也比较简洁,有一些大致的讲解和用法。

而Python的代码语句、例子展示、参数分析等细节展示比较完善,撰写帮助文档的人更多会出示一个完整的demo,因而对于自学的人来说比较友好。

此外,Python是一种通用的语言,你可以与小伙伴共享Notebook,而无需他们安装任何东西,更重要的是,可以把不同背景的人集合在一起,灵活性强,扩展性好,多功能工作,也极有可能碰撞出更多思维火花。

例子 

文本信息挖掘,是一种常见的数据处理与分析使用场景,比如说电商网购的评价,社交网站的标签,新闻里的情感分析等等。

使用R做情感分析时,需要对数据进行预处理,清除掉没用的符号后,做分词。然后构建单词-文档-标签数据集-创建文档-词项矩阵,再借助各类包来进行机器学习算法。

由于情感分析的文本通常是一个非常规模化的数据,在R里相对处理速度比较慢,并且需要使用多个包来协作。

使用Python做情感分析时,优先需要将句子分解为单词,然后操作特征提取,去除停用词;接下来降维,再进行分类算法模型训练和模型评估

Python的包集成性很强,尤其对于文本挖掘情感分析这个问题来讲,可以更快更简便地完成这个操作。 

时间序列分析,是根据系统观察得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法,可以用在金融领域、气象预测、市场分析领域等。

使用R语言做时序分析时,因为R拥有许多程序包可用于处理规则和不规则时间序列,因而很有优势,比如library(xts),library(timeSeires),library(zoo)—时间基础包,library(FinTS)--调用其中的自回归检验函数等,出具的结果也非常直观和清晰。

使用Python做时序分析时,由于没有特别完善的时序分析包,没有专门为了做预测而写的方程,和可视化一样,需要操作者自行写更多的代码。常用的,statsmodels模块,该模块可以用来进行时间序列的差分,建模和模型的检验。

通过以上两个栗子你感受到了吗!

工具不分好坏,是因为你具体想要解决的问题而异的。

以上是r语言和python的详细对比的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

See all articles