目录
背景
创建测试数据的方式
创建基础表结构
方式1: 采用存储过程和内存表
方式2: 采用临时表
首页 数据库 mysql教程 MySQL 快速创建千万级测试数据

MySQL 快速创建千万级测试数据

Jun 18, 2019 pm 02:42 PM
mysql

MySQL3.png

备注: 此文章的数据量在100W,如果想要千万级,调大数量即可,但是不要大量使用rand() 或者uuid() 会导致性能下降

背景

在进行查询操作的性能测试或者sql优化时,我们经常需要在线下环境构建大量的基础数据供我们测试,模拟线上的真实环境。

废话,总不能让我去线上去测试吧,会被DBA砍死的

创建测试数据的方式

    1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐)
    2. 编写存储过程和函数执行(本文实现方式1)
    3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒)
    4. 一行一行手动插入,(WTF,去死吧)
登录后复制

创建基础表结构

不管用何种方式,我要插在那张表总要创建的吧

CREATE TABLE `t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
登录后复制

方式1: 采用存储过程和内存表

  • 创建内存表

利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中

CREATE TABLE `t_user_memory` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;
登录后复制
  • 创建函数和存储过程

# 创建随机字符串和随机时间的函数
mysql> delimiter $$
mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
    ->     DECLARE return_str varchar(255) DEFAULT '' ;
    ->     DECLARE i INT DEFAULT 0;
    ->     WHILE i < n DO
    ->         SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1));
    ->         SET i = i + 1;
    ->     END WHILE;
    ->     RETURN return_str;
    -> END$$
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE sub INT DEFAULT 0;
    ->     DECLARE ret DATETIME;
    ->     SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd));
    ->     SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND);
    ->     RETURN ret;
    -> END $$

mysql> delimiter ;

# 创建插入数据存储过程
mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int)
    -> BEGIN
    ->     DECLARE i INT DEFAULT 1;
    ->     WHILE (i <= n) DO
    ->         INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW());
    ->         SET i = i + 1;
    ->     END WHILE;
    -> END
    -> $$
Query OK, 0 rows affected (0.01 sec)
登录后复制
  • 调用存储过程

mysql> CALL add_t_user_memory(1000000);
ERROR 1114 (HY000): The table 't_user_memory' is full
出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试
登录后复制
  • 从内存表插入普通表

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
登录后复制
登录后复制

方式2: 采用临时表

  • 创建临时数据表tmp_table

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
登录后复制
登录后复制
  • 用 python或者bash 生成 100w 记录的数据文件(python瞬间就会生成完)

python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt
登录后复制
  • 导入数据到临时表tmp_table中

mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table;
Query OK, 1000000 rows affected (2.55 sec)
Records: 1000000  Deleted: 0  Skipped: 0  Warnings: 0

千万级数据 20秒插入完成
登录后复制

注意: 导入数据时有可能会报错,原因是mysql默认没有开secure_file_priv( 这个参数用来限制数据导入和导出操作的效果,例如执行LOAD DATA、SELECT … INTO OUTFILE语句和LOAD_FILE()函数。这些操作需要用户具有FILE权限。 )

解决办法:在mysql的配置文件中(my.ini 或者 my.conf)中添加 secure_file_priv = /Users/LJTjintao/temp/`, 然后重启mysql 解决

Snipaste_2019-06-18_14-40-21.pngSnipaste_2019-06-18_14-40-58.png

  • 以临时表为基础数据,插入数据到t_user中,100W数据插入需要10.37s

mysql> INSERT INTO t_user
    ->   SELECT
    ->     id,
    ->     uuid(),
    ->     CONCAT('userNickName', id),
    ->     FLOOR(Rand() * 1000),
    ->     FLOOR(Rand() * 100),
    ->     NOW()
    ->   FROM
    ->     tmp_table;
Query OK, 1000000 rows affected (10.37 sec)
Records: 1000000  Duplicates: 0  Warnings: 0
登录后复制
  • 更新创建时间字段让插入的数据的创建时间更加随机

UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);

Query OK, 1000000 rows affected (5.21 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0

mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);


Query OK, 1000000 rows affected (4.77 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0
登录后复制
mysql> select * from t_user limit 30;
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
| id | c_user_id                            | c_name         | c_province_id | c_city_id | create_time         |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
|  1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1  |            84 |        64 | 2015-11-13 21:13:19 |
|  2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2  |           967 |        90 | 2019-11-13 20:19:33 |
|  3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3  |           623 |        40 | 2014-11-13 20:57:46 |
|  4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4  |           140 |        49 | 2016-11-13 20:50:11 |
|  5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5  |            47 |        75 | 2016-11-13 21:17:38 |
|  6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6  |           642 |        94 | 2015-11-13 20:57:36 |
|  7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7  |           780 |         7 | 2015-11-13 20:55:07 |
|  8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8  |            39 |        96 | 2017-11-13 21:42:46 |
|  9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9  |           731 |        74 | 2015-11-13 22:48:30 |
| 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 |           534 |        43 | 2016-11-13 22:54:10 |
| 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 |           572 |        55 | 2018-11-13 20:05:19 |
| 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 |            71 |        68 | 2014-11-13 20:44:04 |
| 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 |           204 |        97 | 2019-11-13 20:24:23 |
| 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 |           249 |        32 | 2019-11-13 22:49:43 |
| 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 |           900 |        51 | 2019-11-13 20:55:26 |
| 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 |           854 |        74 | 2018-11-13 22:07:58 |
| 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 |           136 |        46 | 2013-11-13 21:53:34 |
| 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 |           897 |        10 | 2018-11-13 20:03:55 |
| 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 |           829 |        83 | 2013-11-13 20:38:54 |
| 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 |           683 |        91 | 2019-11-13 20:02:42 |
| 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 |           511 |        81 | 2013-11-13 21:16:48 |
| 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 |           562 |        35 | 2019-11-13 20:15:52 |
| 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 |            91 |        39 | 2016-11-13 20:28:59 |
| 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 |           677 |        21 | 2016-11-13 21:37:15 |
| 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 |            50 |        60 | 2018-11-13 20:39:20 |
| 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 |           856 |        47 | 2018-11-13 21:24:53 |
| 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 |           816 |        65 | 2014-11-13 22:06:26 |
| 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 |           806 |         7 | 2019-11-13 20:17:30 |
| 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 |           973 |        63 | 2014-11-13 21:08:09 |
| 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 |           237 |        29 | 2018-11-13 21:48:17 |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
30 rows in set (0.01 sec)
登录后复制

更多MySQL相关技术文章,请访问MySQL教程栏目进行学习!

以上是MySQL 快速创建千万级测试数据的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

mysql:简单的概念,用于轻松学习 mysql:简单的概念,用于轻松学习 Apr 10, 2025 am 09:29 AM

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

phpmyadmin怎么打开 phpmyadmin怎么打开 Apr 10, 2025 pm 10:51 PM

可以通过以下步骤打开 phpMyAdmin:1. 登录网站控制面板;2. 找到并点击 phpMyAdmin 图标;3. 输入 MySQL 凭据;4. 点击 "登录"。

navicat premium怎么创建 navicat premium怎么创建 Apr 09, 2025 am 07:09 AM

使用 Navicat Premium 创建数据库:连接到数据库服务器并输入连接参数。右键单击服务器并选择“创建数据库”。输入新数据库的名称和指定字符集和排序规则。连接到新数据库并在“对象浏览器”中创建表。右键单击表并选择“插入数据”来插入数据。

navicat怎么新建连接mysql navicat怎么新建连接mysql Apr 09, 2025 am 07:21 AM

可在 Navicat 中通过以下步骤新建 MySQL 连接:打开应用程序并选择“新建连接”(Ctrl N)。选择“MySQL”作为连接类型。输入主机名/IP 地址、端口、用户名和密码。(可选)配置高级选项。保存连接并输入连接名称。

MySQL和SQL:开发人员的基本技能 MySQL和SQL:开发人员的基本技能 Apr 10, 2025 am 09:30 AM

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。

redis怎么使用单线程 redis怎么使用单线程 Apr 10, 2025 pm 07:12 PM

Redis 使用单线程架构,以提供高性能、简单性和一致性。它利用 I/O 多路复用、事件循环、非阻塞 I/O 和共享内存来提高并发性,但同时存在并发性受限、单点故障和不适合写密集型工作负载的局限性。

SQL删除行后如何恢复数据 SQL删除行后如何恢复数据 Apr 09, 2025 pm 12:21 PM

直接从数据库中恢复被删除的行通常是不可能的,除非有备份或事务回滚机制。关键点:事务回滚:在事务未提交前执行ROLLBACK可恢复数据。备份:定期备份数据库可用于快速恢复数据。数据库快照:可创建数据库只读副本,在数据误删后恢复数据。慎用DELETE语句:仔细检查条件,避免误删数据。使用WHERE子句:明确指定要删除的数据。使用测试环境:在执行DELETE操作前进行测试。

MySQL:世界上最受欢迎的数据库的简介 MySQL:世界上最受欢迎的数据库的简介 Apr 12, 2025 am 12:18 AM

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

See all articles