python有char类型吗
python没有char类型,一个字符也是字符串。
为什么在Python中没有专门的char数据类型呢?
简单胜于复杂。在 Python 中, 字符串中的每个字符占的空间大小是 8 bit.
>>> import sys >>> sys.getsizeof('') 37 >>> sys.getsizeof('a') 38
可以看到, 空字符占用37个 byte, 长度为1的字符串 'a' 占内存 38个 byte. 多了一个字符 a 之后多了 1 个 byte.
在 Python 内部, 字符串是这样实现的
typedef struct { PyObject_VAR_HEAD long ob_shash; int ob_sstate; char ob_sval[1]; /* Invariants: * ob_sval contains space for 'ob_size+1' elements. * ob_sval[ob_size] == 0. * ob_shash is the hash of the string or -1 if not computed yet. * ob_sstate != 0 iff the string object is in stringobject.c's * 'interned' dictionary; in this case the two references * from 'interned' to this object are *not counted* in ob_refcnt. */ } PyStringObject;
每个 char 就是存在 ob_sval 里面的, 占大小 8bit. 余下的36个 byte 主要来自于宏 PyObject_VAR_HEAD. 实际上 python 的string实现还用到了一个叫 *interned 的全局变量, 里面可以存长度为 0 或 1 的字符串, 也就是 char, 可以节省空间并且加快速度.
/* This dictionary holds all interned strings. Note that references to strings in this dictionary are *not* counted in the string's ob_refcnt. When the interned string reaches a refcnt of 0 the string deallocation function will delete the reference from this dictionary. Another way to look at this is that to say that the actual reference count of a string is: s->ob_refcnt + (s->ob_sstate?2:0) */ static PyObject *interned;
实际上在 python 里既没有指针也没有"裸露的数据结构" (非对象), 连最简单的整数 integer 都是这样实现的
typedef struct { PyObject_HEAD long ob_ival; } PyIntObject;
总而言之, 这样的设计满足 python 的 "一切都是对象", "一切都尽可能simple" 的设计思想。
相关教程推荐:Python视频教程
以上是python有char类型吗的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
