python数据分析师需要学什么
python数据分析师。现在大数据分析可以热得不要不要的。从发展来看,python数据分析师很有前景的。但也并不是随便一个公司就可以做大数据分析的。有几个问题是做大数据要考虑的:大数据来源是否全面,分析什么,谁来使用等等。当然如果能到能做大数据的公司,那薪水还是可观的。要做python数据分析师,有一些东西是不得不学的,要不然,做不了分析师的,可能做的程序员,帮别人实现分析的结果而已。
第一:统计学知识。(推荐学习:Python视频教程)
这是很大一部分大数据分析师的短板。当然这里说的不是简单的一些统计而已。而是包括均值、中位数、标准差、方差、概率、假设检验等等具有时间、空间、数据本身。差不多应该是理工科的高等数学的知识,甚至还高一点儿。要能够建模,要不然你分析出来的结果离实际相差十万八千里的话,估计要不了几天,你就会被卷铺盖走人了。当然,做个一般的大数据分析师,就不会涉及到很深的高等数学知识了,但要做一个牛B的大数据分析师,还是要学习学习再学习。
第二:很多人想不到的,你还是把EXCEL玩熟悉吧。
当然不需要掌握的高大全,也得要掌握常用的函数,比如重点包括但不限于sum,count,sumif,countif,find,if,left/right,时间转换,透视表,各种图表做法等之类的。如果数据量不算是特别大的话,Excel能够解决很多问题。比如,筛选部分赃数据,排序,挑选满足条件的数据等等。
第三:分析思维的练习。
比如结构化思维、思维导图、或百度脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
第四:数据库知识。
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
第五:业务学习。
其实对于大数据分析师来说,了解业务比了解数据更重要。对于行业业务是怎么走的对于数据的分析有着非常重要的作用,不了解业务,可能你分析的结果不是别人想要的。
第六:开发工具及环境。
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具python等等语言工具。
总之,要做一个高级或总监级的大数据分析师那是相当的烧脑的。要学习了解的东西如果只是单纯的数据方面的话,那业务和统计知识的学习是必不可少的。如果是实用型的大数据分析师可能只掌握某些部分就可以。大数据开发工程师的话,基本就是掌握开发环境、开发语言以及各种图表的应用,也是可以满足的。毕竟,一个公司要团队协作,一人懂一部分就可以搞出分析产品出来了。认定一项事情就去干!越干越轻松,越干越牛B!
更多Python相关技术文章,请访问Python教程栏目进行学习!
以上是python数据分析师需要学什么的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
