首页 > 常见问题 > svm算法详解

svm算法详解

(*-*)浩
发布: 2020-01-15 10:43:24
原创
5121 人浏览过

svm算法详解

SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题。                      (推荐学习:phpstorm

简单地说,就是升维和线性化。

升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津。

但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。

SVM(Support Vector Machine)中文名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。

相关概念

分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别的算法。例如在股票涨跌预测中,我们认为前一天的交易量和收盘价对于第二天的涨跌是有影响的,那么分类器就是通过样本的交易量和收盘价预测第二天的涨跌情况的算法。

特征:在分类问题中,输入到分类器中的数据叫做特征。以上面的股票涨跌预测问题为例,特征就是前一天的交易量和收盘价。

线性分类器:线性分类器是分类器中的一种,就是判定分类结果的根据是通过特征的线性组合得到的,不能通过特征的非线性运算结果作为判定根据。还以上面的股票涨跌预测问题为例,判断的依据只能是前一天的交易量和收盘价的线性组合,不能将交易量和收盘价进行开方,平方等运算。

线性分类器起源

在实际应用中,我们往往遇到这样的问题:给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。

怎么分呢?把整个空间劈成两半呗(让我想到了盘古)。用二维空间举个例子,如上图所示,我们用一条直线把空间切割开来,直线左边的点属于类别-1(用三角表示),直线右边的点属于类别1(用方块表示)。

如果用数学语言呢,就是这样的:空间是由X1和X2组成的二维空间,直线的方程是X1+X2 = 1,用向量符号表示即为[1,1]^{T}[X1,X2]-1=0 。点x在直线左边的意思是指,当把x放入方程左边,计算结果小于0。同理,在右边就是把x放入方程左边,计算出的结果大于0。

以上是svm算法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
svm
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板