首页 数据库 mysql教程 关于MySQL8.0 InnoDB并行执行的详解

关于MySQL8.0 InnoDB并行执行的详解

Mar 27, 2020 am 08:58 AM

概述

MySQL经过多年的发展已然成为最流行的数据库,广泛用于互联网行业,并逐步向各个传统行业渗透。之所以流行,一方面是其优秀的高并发事务处理的能力,另一方面也得益于MySQL丰富的生态。MySQL在处理OLTP场景下的短查询效果很好,但对于复杂大查询则能力有限。最直接一点就是,对于一个SQL语句,MySQL最多只能使用一个CPU核来处理,在这种场景下无法发挥主机CPU多核的能力。MySQL没有停滞不前,一直在发展,新推出的8.0.14版本第一次引入了并行查询特性,使得check table和select count(*)类型的语句性能成倍提升。虽然目前使用场景还比较有限,但后续的发展值得期待。

推荐:《mysql视频教程

使用方式

通过配置参数innodb_parallel_read_threads来设置并发线程数,就能开始并行扫描功能,默认这个值为4。我这里做一个简单的实验,通过sysbench导入2亿条数据,分别配置innodb_parallel_read_threads为1,2,4,8,16,32,64,测试并行执行的效果。测试语句为select count(*) from sbtest1;

66ecb3acc5615710de8ab5683f1924a.png

横轴是配置并发线程数,纵轴是语句执行时间。从测试结果来看,整个并行表现还是不错的,扫描2亿条记录,从单线程的18s,下降到32线程的1s。后面并发开再多,由于数据量有限,多线程的管理消耗超过了并发带来的性能提升,不能再继续缩短SQL执行时间。

MySQL并行执行

实际上目前MySQL的并行执行还处于非常初级阶段,如下图所示,左边是之前MySQL串行处理单个SQL形态;中间的是目前MySQL版本提供的并行能力,InnoDB引擎并行扫描的形态;最右边的是未来MySQL要发展的形态,优化器根据系统负载和SQL生成并行计划,并将分区计划下发给执行器并行执行。并行执行不仅仅是并行扫描,还包括并行聚集,并行连接,并行分组,以及并行排序等。目前版本MySQL的上层的优化器以及执行器并没有配套的修改。因此,下文的讨论主要集中在InnoDB引擎如何实现并行扫描,主要包括分区,并行扫描,预读以及与执行器交互的适配器类。

127da477bbaa6be0639f8d477363759.png

分区

并行扫描的一个核心步骤就是分区,将扫描的数据划分成多份,让多个线程并行扫描。InnoDB引擎是索引组织表,数据以B+tree的形式存储在磁盘上,节点的单位是页面(block/page),同时缓冲池中会对热点页面进行缓存,并通过LRU算法进行淘汰。分区的逻辑就是,从根节点页面出发,逐层往下扫描,当判断某一层的分支数超过了配置的线程数,则停止拆分。在实现时,实际上总共会进行两次分区,第一次是按根节点页的分支数划分分区,每个分支的最左叶子节点的记录为左下界,并将这个记录记为相邻上一个分支的右上界。通过这种方式,将B+tree划分成若干子树,每个子树就是一个扫描分区。经过第一次分区后,可能出现分区数不能充分利用多核问题,比如配置了并行扫描线程为3,第一次分区后,产生了4个分区,那么前3个分区并行做完后,第4个分区至多只有一个线程扫描,最终效果就是不能充分利用多核资源。

二次分区

为了解决这个问题,8.0.17版本引入了二次分区,对于第4个分区,继续下探拆分,这样多个子分区又能并发扫描,InnoDB引擎并发扫描的最小粒度是页面级别。具体判断二次分区的逻辑是,一次分区后,若分区数大于线程数,则编号大于线程数的分区,需要继续进行二次分区;若分区数小于线程数且B+tree层次很深,则所有的分区都需要进行二次分区。

相关代码如下:

split_point = 0;
if (ranges.size() > max_threads()) {
   //最后一批分区进行二次分区                                      
   split_point = (ranges.size() / max_threads()) * max_threads();          
 } else if (m_depth < SPLIT_THRESHOLD) {                                  
   /* If the tree is not very deep then don&#39;t split. For smaller tables    
   it is more expensive to split because we end up traversing more blocks*/
   split_point = max_threads();                                            
 } else {
   //如果B+tree的层次很深(层数大于或等于3,数据量很大),则所有分区都需要进行二次分区
 }
登录后复制

无论是一次分区,还是二次分区,分区边界的逻辑都一样,以每个分区的最左叶子节点的记录为左下界,并且将这个记录记为相邻上一个分支的右上界。这样确保分区足够多,粒度足够细,充分并行。下图展示了配置为3的并发线程,扫描进行二次分区的情况。

相关代码如下:

2072eee3859cea60f14ba0a382bad65.png

create_ranges(size_t depth, size_t level)
一次分区:
parallel_check_table
 add_scan
   partition(scan_range, level=0)  /* start at root-page */
     create_ranges(scan_range, depth=0, level=0)
   create_contexts(range, index >= split_point)
二次分区:                                                      
split()
 partition(scan_range, level=1)
   create_ranges(depth=0,level)
登录后复制

并行扫描

在一次分区后,将每个分区扫描任务放入到一个lock-free队列中,并行的worker线程从队列中获取任务,执行扫描任务,如果获取的任务带有split属性,这个时候worker会将任务进行二次拆分,并投入到队列中。这个过程主要包括两个核心接口,一个是工作线程接口,另外一个是遍历记录接口,前者从队列中获取任务并执行,并维护统计计数;后者根据可见性获取合适的记录,并通过上层注入的回调函数处理,比如计数等。

Parallel_reader::worker(size_t thread_id)

{

 1.从ctx-queue提取ctx任务

 2.根据ctx的split属性,确定是否需要进一步拆分分区(split())

 3.遍历分区所有记录(traverse())

 4.一个分区任务结束后,维护m_n_completed计数

 5.如果m_n_compeleted计数达到ctx数目,唤醒所有worker线程结束

 6.根据traverse接口,返回err信息。

}

Parallel_reader::Ctx::traverse()

{

 1.根据range设置pcursor

 2.找到btree,将游标定位到range的起始位置

 3.判断可见性(check_visibility)

 4.如果可见,根据回调函数计算(比如统计)

 5.向后遍历,若达到了页面的最后一条记录,启动预读机制(submit_read_ahead)

 6.超出范围后结束

}

同时在8.0.17版本还引入了预读机制,避免因为IO瓶颈导致并行效果不佳的问题。目前预读的线程数不能配置,在代码中硬编码为2个线程。每次预读的单位是一个簇(InnoDB文件通过段,簇,页三级结构管理,一个簇是一组连续的页),根据页面配置的大小,可能为1M或者2M。对于常见的16k页面配置,每次预读1M,也就是64个页面。worker线程在进行扫描时,会先判断相邻的下一个页面是否为簇的第一个页面,如果是,则发起预读任务。预读任务同样通过lock-free 队列缓存,worker线程是生产者,read-ahead-worker是消费者。由于所有分区页面没有重叠,因此预读任务也不会重复。

执行器交互(适配器)

实际上,MySQL已经封装了一个适配器类Parallel_reader_adapter来供上层使用,为后续的更丰富的并行执行做准备。首先这个类需要解决记录格式的问题,将引擎层扫描的记录转换成MySQL格式,这样做到上下层解耦,执行器不用感知引擎层格式,统一按MySQL格式处理。整个过程是一个流水线,通过一个buffer批量存储MySQL记录,worker线程不停的将记录从引擎层上读上来,同时有记录不停的被上层处理,通过buffer可以平衡读取和处理速度的差异,确保整个过程流动起来。缓存大小默认是2M,根据表的记录行长来确定buffer可以缓存多少个MySQL记录。核心流程主要在process_rows接口中,流程如下

process_rows

{

 1.将引擎记录转换成MySQL记录

 2.获取本线程的buffer信息(转换了多少mysql记录,发送了多少给上层)

 3.将MySQL记录填充进buffer,自增统计m_n_read

 4.调用回调函数处理(比如统计,聚合,排序等),自增统计m_n_send

}

对于调用者来说,需要设置表的元信息,以及注入处理记录回调函数,比如处理聚集,排序,分组的工作。回调函数通过设置m_init_fn,m_load_fn和m_end_fn来控制。

总结

MySQL8.0引入了并行查询虽然还比较初级,但已经让我们看到了MySQL并行查询的潜力,从实验中我们也看到了开启并行执行后,SQL语句执行充分发挥了多核能力,响应时间急剧下降。相信在不久的将来,8.0的会支持更多并行算子,包括并行聚集,并行连接,并行分组以及并行排序等。

以上是关于MySQL8.0 InnoDB并行执行的详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1658
14
CakePHP 教程
1415
52
Laravel 教程
1309
25
PHP教程
1257
29
C# 教程
1231
24
与MySQL中使用索引相比,全表扫描何时可以更快? 与MySQL中使用索引相比,全表扫描何时可以更快? Apr 09, 2025 am 12:05 AM

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

可以在 Windows 7 上安装 mysql 吗 可以在 Windows 7 上安装 mysql 吗 Apr 08, 2025 pm 03:21 PM

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

mysql:简单的概念,用于轻松学习 mysql:简单的概念,用于轻松学习 Apr 10, 2025 am 09:29 AM

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

mysql 和 mariadb 可以共存吗 mysql 和 mariadb 可以共存吗 Apr 08, 2025 pm 02:27 PM

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

RDS MySQL 与 Redshift 零 ETL 集成 RDS MySQL 与 Redshift 零 ETL 集成 Apr 08, 2025 pm 07:06 PM

数据集成简化:AmazonRDSMySQL与Redshift的零ETL集成高效的数据集成是数据驱动型组织的核心。传统的ETL(提取、转换、加载)流程复杂且耗时,尤其是在将数据库(例如AmazonRDSMySQL)与数据仓库(例如Redshift)集成时。然而,AWS提供的零ETL集成方案彻底改变了这一现状,为从RDSMySQL到Redshift的数据迁移提供了简化、近乎实时的解决方案。本文将深入探讨RDSMySQL零ETL与Redshift集成,阐述其工作原理以及为数据工程师和开发者带来的优势。

mysql用户和数据库的关系 mysql用户和数据库的关系 Apr 08, 2025 pm 07:15 PM

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

Bangla 部分模型检索中的 Laravel Eloquent ORM) Bangla 部分模型检索中的 Laravel Eloquent ORM) Apr 08, 2025 pm 02:06 PM

LaravelEloquent模型检索:轻松获取数据库数据EloquentORM提供了简洁易懂的方式来操作数据库。本文将详细介绍各种Eloquent模型检索技巧,助您高效地从数据库中获取数据。1.获取所有记录使用all()方法可以获取数据库表中的所有记录:useApp\Models\Post;$posts=Post::all();这将返回一个集合(Collection)。您可以使用foreach循环或其他集合方法访问数据:foreach($postsas$post){echo$post->

MySQL:初学者的数据管理易用性 MySQL:初学者的数据管理易用性 Apr 09, 2025 am 12:07 AM

MySQL适合初学者使用,因为它安装简单、功能强大且易于管理数据。1.安装和配置简单,适用于多种操作系统。2.支持基本操作如创建数据库和表、插入、查询、更新和删除数据。3.提供高级功能如JOIN操作和子查询。4.可以通过索引、查询优化和分表分区来提升性能。5.支持备份、恢复和安全措施,确保数据的安全和一致性。

See all articles