分享Mysql优化思路
一、总体优化思路
首先构建脚本观察查询数,连接数等数据,确定环境原因以及内部SQL执行原因,然后根据具体原因做具体处理。
推荐:《mysql视频教程》
二、构建脚本观察状态
mysqladmin -uroot -p ext \G
该命令可获取当前查询数量等信息,定时轮询并将结果重定向到文本中,然后处理成图表。
三、处理对策
1.若是规律性出现查询慢,考虑缓存雪崩问题。
对于该问题只需将缓存的失效时间处理成不要相近时间同时失效,失效时间尽量离散化,或者集中到午夜失效。
2.若非规律性查询缓慢,考虑设计缺乏优化
处理方法:
a:开启profiling记录查询操作,并获取语句执行详细信息
show variables like '%profiling%'; set profiling=on; select count(*) from user; show profiles; show profile for query 1; >>> +--------------------------------+----------+ | Status | Duration | +--------------------------------+----------+ | starting | 0.000060 | | Executing hook on transaction | 0.000004 | | starting | 0.000049 | | checking permissions | 0.000007 | | Opening tables | 0.000192 | | init | 0.000006 | | System lock | 0.000009 | | optimizing | 0.000005 | | statistics | 0.000014 | | preparing | 0.000017 | | executing | 0.001111 | | end | 0.000006 | | query end | 0.000003 | | waiting for handler commit | 0.000015 | | closing tables | 0.000011 | | freeing items | 0.000085 | | cleaning up | 0.000008 | +--------------------------------+----------+
b:使用explain 查看语句执行情况,索引使用,扫描范围等等
mysql> explain select count(*) from goods \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: goods partitions: NULL type: index possible_keys: NULL key: gid key_len: 5 ref: NULL rows: 3 filtered: 100.00 Extra: Using index
c:相关优化手法
表的优化与列类型选择
列选择原则:
1:字段类型优先级 整型 > date,time > char,varchar > blob
原因:整型,time运算快,节省空间
char/varchar要考虑字符集的转换与排序时的校对集,速度慢
blob无法使用内存临时表
2:够用就行,不要慷慨(如 smallint,varchar(N))
原因:大的字段浪费内存,影响速度
以varchar(10), varchar(300)存储的内容相同,但在表联查时,varchar(300)要花更多内存
3:尽量避免使用NULL
原因:NULL不利于索引,要用特殊的字节来标注.
在磁盘上占据的空间其实更大
索引优化策略
1.索引类型
1.1 B-tree索引(排好序的快速查找结构)
注:Myisam,innodb中,默认用的是B-tree索引
1.2 hash索引
在memory表里,默认是hash索引,hash的理论查询时间复查度为O(1)
疑问:既然hash索引如此高效,为何不都用他?
a.hash函数计算后的结果是随机的,如果是在磁盘上放置数据,以主键为id为例,那么随着id的增长,id对应的行,在磁盘上随机放置。
b.无法对范围查询进行优化
c.无法利用前缀索引,比如在b-tree中,field列的值为“helloworld”,索引查询xx=hello/xx=helloworld都可以利用索引(左前缀索引),但hash索引无法做到,因为hash(hello)与hash(helloworld)并无关联关系。
d.排序也无法优化
e.必须回行,通过索引拿到数据位置,必须回到表中取数据.
2.b-tree索引的常见误区
2.1 在where条件常用的列上都加上索引
例:where cat_id=3 and price>100; //查询第3个栏目,100元以上的商品
误:cat_id和price上都加上索引。其实只能用上一个索引,他们都是独立索引.
2.2 在多列上建立索引后,查询哪个列,索引都将发挥作用
2.2 在多列上建立索引后,查询哪个列,索引都将发挥作用
正解:多列索引上,索引发挥作用,需要满足左前缀要求(层层索引)
以index(a,b,c)为例:
语句 索引是否发挥作用 where a=3 是 where a=3 and b=5 是 where a=3 and b=5 and c=4 是 where b=3 or where c=4 否 where a=3 and c=4 a列能发挥索引作用,c列不能 where a=3 and b>10 and c=7 a,b能发挥索引作用,c列不能
高性能索引策略
1.对于innodb而言,因为节点下有数据文件,因此节点的分裂将会变得比较慢,对于innodb的主键,尽量用整型,而且是递增的整型。
2.索引的长度直接影响索引文件的大小,影响增删改的速度,并间接影响查询速度(占用内存多)。
3.针对列中的值,从左往右截取部分来建索引。
a.截的越短,重复度越高,区分越小,索引效果越不好
b.截的越长,虽然区分度提高,但索引文件变大影响速度
所以尽量在长度上找到一个平衡点使性能最大化,惯用手法:截取不同长度来测试索引区分度
区分度测试:
select count(distinct left(word, 1)) / count(*) from table;
测试完成后可以按测试得出的最优长度建立索引
alter table table_name add index word(word(4));
理想的索引
1.查询频繁
2.区分度高
3.长度小
4.尽量覆盖常用查询字段
以上是分享Mysql优化思路的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

MySQL适合初学者使用,因为它安装简单、功能强大且易于管理数据。1.安装和配置简单,适用于多种操作系统。2.支持基本操作如创建数据库和表、插入、查询、更新和删除数据。3.提供高级功能如JOIN操作和子查询。4.可以通过索引、查询优化和分表分区来提升性能。5.支持备份、恢复和安全措施,确保数据的安全和一致性。

数据集成简化:AmazonRDSMySQL与Redshift的零ETL集成高效的数据集成是数据驱动型组织的核心。传统的ETL(提取、转换、加载)流程复杂且耗时,尤其是在将数据库(例如AmazonRDSMySQL)与数据仓库(例如Redshift)集成时。然而,AWS提供的零ETL集成方案彻底改变了这一现状,为从RDSMySQL到Redshift的数据迁移提供了简化、近乎实时的解决方案。本文将深入探讨RDSMySQL零ETL与Redshift集成,阐述其工作原理以及为数据工程师和开发者带来的优势。

要填写 MySQL 用户名和密码,请:1. 确定用户名和密码;2. 连接到数据库;3. 使用用户名和密码执行查询和命令。

1.使用正确的索引索引通过减少扫描的数据量来加速数据检索select*fromemployeeswherelast_name='smith';如果多次查询表的某一列,则为该列创建索引如果您或您的应用根据条件需要来自多个列的数据,则创建复合索引2.避免选择*仅选择那些需要的列,如果您选择所有不需要的列,这只会消耗更多的服务器内存并导致服务器在高负载或频率时间下变慢例如,您的表包含诸如created_at和updated_at以及时间戳之类的列,然后避免选择*,因为它们在正常情况下不需要低效查询se

Navicat本身不存储数据库密码,只能找回加密后的密码。解决办法:1. 检查密码管理器;2. 检查Navicat的“记住密码”功能;3. 重置数据库密码;4. 联系数据库管理员。

数据库ACID属性详解ACID属性是确保数据库事务可靠性和一致性的一组规则。它们规定了数据库系统处理事务的方式,即使在系统崩溃、电源中断或多用户并发访问的情况下,也能保证数据的完整性和准确性。ACID属性概述原子性(Atomicity):事务被视为一个不可分割的单元。任何部分失败,整个事务回滚,数据库不保留任何更改。例如,银行转账,如果从一个账户扣款但未向另一个账户加款,则整个操作撤销。begintransaction;updateaccountssetbalance=balance-100wh

SQLLIMIT子句:控制查询结果行数SQL中的LIMIT子句用于限制查询返回的行数,这在处理大型数据集、分页显示和测试数据时非常有用,能有效提升查询效率。语法基本语法:SELECTcolumn1,column2,...FROMtable_nameLIMITnumber_of_rows;number_of_rows:指定返回的行数。带偏移量的语法:SELECTcolumn1,column2,...FROMtable_nameLIMIToffset,number_of_rows;offset:跳过
