redis中设置lru算法的方法
1、设置Redis使用LRU算法
LRU(Least Recently Used)最近最少使用算法是众多置换算法中的一种。
Redis中有一个maxmemory概念,主要是为了将使用的内存限定在一个固定的大小。Redis用到的LRU 算法,是一种近似的LRU算法。
(1)设置maxmemory
上面已经说过maxmemory是为了限定Redis最大内存使用量。有多种方法设定它的大小。其中一种方法是通过CONFIG SET设定,如下:
127.0.0.1:6379> CONFIG GET maxmemory 1) "maxmemory" 2) "0" 127.0.0.1:6379> CONFIG SET maxmemory 100MB OK 127.0.0.1:6379> CONFIG GET maxmemory 1) "maxmemory" 2) "104857600"
另一种方法是修改配置文件redis.conf:
maxmemory 100mb
注意,在64bit系统下,maxmemory设置为0表示不限制Redis内存使用,在32bit系统下,maxmemory隐式不能超过3GB。
当Redis内存使用达到指定的限制时,就需要选择一个置换的策略。
(2)置换策略
当Redis内存使用达到maxmemory时,需要选择设置好的maxmemory-policy进行对老数据的置换。
下面是可以选择的置换策略:
noeviction: 不进行置换,表示即使内存达到上限也不进行置换,所有能引起内存增加的命令都会返回error
allkeys-lru: 优先删除掉最近最不经常使用的key,用以保存新数据
volatile-lru: 只从设置失效(expire set)的key中选择最近最不经常使用的key进行删除,用以保存新数据
allkeys-random: 随机从all-keys中选择一些key进行删除,用以保存新数据
volatile-random: 只从设置失效(expire set)的key中,选择一些key进行删除,用以保存新数据
volatile-ttl: 只从设置失效(expire set)的key中,选出存活时间(TTL)最短的key进行删除,用以保存新数据
需要注意的是:
(1)设置maxmemory-policy的方法和设置maxmemory方法类似,通过redis.conf或是通过CONFIG SET动态修改。
(2)如果没有匹配到可以删除的key,那么volatile-lru、volatile-random和volatile-ttl策略和noeviction替换策略一样——不对任何key进行置换。
(3)选择合适的置换策略是很重要的,这主要取决于你的应用的访问模式,当然你也可以动态的修改置换策略,并通过用Redis命令——INFO去输出cache的命中率情况,进而可以对置换策略进行调优。
一般来说,有这样一些常用的经验:
在所有的key都是最近最经常使用,那么就需要选择allkeys-lru进行置换最近最不经常使用的key,如果你不确定使用哪种策略,那么推荐使用allkeys-lru。
如果所有的key的访问概率都是差不多的,那么可以选用allkeys-random策略去置换数据。
如果对数据有足够的了解,能够为key指定hint(通过expire/ttl指定),那么可以选择volatile-ttl进行置换。
volatile-lru 和 volatile-random经常在一个Redis实例既做cache又做持久化的情况下用到,然而,更好的选择使用两个Redis实例来解决这个问题。
设置是失效时间expire会占用一些内存,而采用allkeys-lru就没有必要设置失效时间,进而更有效的利用内存。
(3)置换策略是如何工作的
理解置换策略的执行方式是非常重要的,比如:
客户端执行一条新命令,导致数据库需要增加数据(比如set key value)
Redis会检查内存使用,如果内存使用超过maxmemory,就会按照置换策略删除一些key
新的命令执行成功
我们持续的写数据会导致内存达到或超出上限maxmemory,但是置换策略会将内存使用降低到上限以下。
如果一次需要使用很多的内存(比如一次写入一个很大的set),那么,Redis的内存使用可能超出最大内存限制一段时间。
(4)近似LRU算法
Redis中的LRU不是严格意义上的LRU算法实现,是一种近似的LRU实现,主要是为了节约内存占用以及提升性能。Redis有这样一个配置——maxmemory-samples,Redis的LRU是取出配置的数目的key,然后从中选择一个最近最不经常使用的key进行置换,默认的5,如下:
maxmemory-samples 5
可以通过调整样本数量来取得LRU置换算法的速度或是精确性方面的优势。
Redis不采用真正的LRU实现的原因是为了节约内存使用。虽然不是真正的LRU实现,但是它们在应用上几乎是等价的。下图是Redis的近似LRU实现和理论LRU实现的对比:
测试开始首先在Redis中导入一定数目的key,然后从第一个key依次访问到最后一个key,因此根据LRU算法第一个被访问的key应该最新被置换,之后再增加50%数目的key,导致50%的老的key被替换出去。
在上图中你可以看到三种类型的点,组成三种不同的区域:
淡灰色的是被置换出去的key
灰色的是没有被置换出去的key
绿色的是新增加的key
理论LRU实现就像我们期待的那样,最旧的50%数目的key被置换出去,Redis的LRU将一定比例的旧key置换出去。
可以看到在样本数为5的情况下,Redis3.0要比Redis2.8做的好很多,Redis2.8中有很多应该被置换出去的数据没有置换出去。在样本数为10的情况下,Redis3.0很接近真正的LRU实现。
LRU是一个预测未来我们会访问哪些数据的模型,如果我们访问数据的形式接近我们预想——幂律,那么近似LRU算法实现将能处理的很好。
在模拟测试中我们可以发现,在幂律访问模式下,理论LRU和Redis近似LRU的差距很小或者就不存在差距。
如果你将maxmemory-samples设置为10,那么Redis将会增加额外的CPU开销以保证接近真正的LRU性能,可以通过检查命中率来查看有什么不同。
通过CONFIG SET maxmemory-samples
2、LRU的实现
<?php /** * LRU是最近最少使用页面置换算法(Least Recently Used),也就是首先淘汰最长时间未被使用的页面 */ class LRU_Cache { private $array_lru = array(); private $max_size = 0; function __construct($size) { // 缓存最大存储 $this->max_size = $size; } public function set_value($key, $value) { // 如果存在,则向队尾移动,先删除,后追加 // array_key_exists() 函数检查某个数组中是否存在指定的键名,如果键名存在则返回true,如果键名不存在则返回false。 if (array_key_exists($key, $this->array_lru)) { // unset() 销毁指定的变量。 unset($this->array_lru[$key]); } // 长度检查,超长则删除首元素 if (count($this->array_lru) > $this->max_size) { // array_shift() 函数删除数组中第一个元素,并返回被删除元素的值。 array_shift($this->array_lru); } // 队尾追加元素 $this->array_lru[$key] = $value; } public function get_value($key) { $ret_value = false; if (array_key_exists($key, $this->array_lru)) { $ret_value = $this->array_lru[$key]; // 移动到队尾 unset($this->array_lru[$key]); $this->array_lru[$key] = $ret_value; } return $ret_value; } public function vardump_cache() { echo "<br>"; var_dump($this->array_lru); } } $cache = new LRU_Cache(5); // 指定了最大空间 6 $cache->set_value("01", "01"); $cache->set_value("02", "02"); $cache->set_value("03", "03"); $cache->set_value("04", "04"); $cache->set_value("05", "05"); $cache->vardump_cache(); echo "<br>"; $cache->set_value("06", "06"); $cache->vardump_cache(); echo "<br>"; $cache->set_value("03", "03"); $cache->vardump_cache(); echo "<br>"; $cache->set_value("07", "07"); $cache->vardump_cache(); echo "<br>"; $cache->set_value("01", "01"); $cache->vardump_cache(); echo "<br>"; $cache->get_value("04"); $cache->vardump_cache(); echo "<br>"; $cache->get_value("05"); $cache->vardump_cache(); echo "<br>"; $cache->get_value("10"); $cache->vardump_cache(); echo "<br>";
更多redis知识请关注redis入门教程栏目。
以上是redis中设置lru算法的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Redis集群是一种分布式部署模式,允许水平扩展Redis实例,通过节点间通信、哈希槽划分键空间、节点选举、主从复制和命令重定向来实现:节点间通信:通过集群总线实现虚拟网络通信。哈希槽:将键空间划分为哈希槽,确定负责键的节点。节点选举:至少需要三个主节点,通过选举机制确保仅有一个活动主节点。主从复制:主节点负责写请求,从节点负责读请求和数据复制。命令重定向:客户端连接到负责键的节点,节点重定向不正确的请求。故障处理:故障检测、标记下线和重新

Redis采用五种策略确保键的唯一性:1. 名称空间分隔;2. HASH数据结构;3. SET数据结构;4. 字符串键的特殊字符;5. Lua脚本验证。具体策略的选择取决于数据组织、性能和扩展性需求。

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

Redis 使用哈希表存储数据,支持字符串、列表、哈希表、集合和有序集合等数据结构。Redis 通过快照 (RDB) 和追加只写 (AOF) 机制持久化数据。Redis 使用主从复制来提高数据可用性。Redis 使用单线程事件循环处理连接和命令,保证数据原子性和一致性。Redis 为键设置过期时间,并使用 lazy 删除机制删除过期键。

Redis 事务确保原子性、一致性、隔离性和持久性(ACID)属性,其运作方式如下:启动事务:使用 MULTI 命令。记录命令:执行任意数量的 Redis 命令。提交或回滚事务:使用 EXEC 命令提交事务,或 DISCARD 命令回滚事务。提交:若无错误,EXEC 命令提交事务,所有命令原子地应用到数据库。回滚:若有错误,DISCARD 命令回滚事务,所有命令被丢弃,数据库状态保持不变。

要查看 Redis 版本号,可以使用以下三种方法:(1) 输入 INFO 命令,(2) 使用 --version 选项启动服务器,(3) 查看配置文件。

要查看 Redis 中的所有键,共有三种方法:使用 KEYS 命令返回所有匹配指定模式的键;使用 SCAN 命令迭代键并返回一组键;使用 INFO 命令获取键的总数。

Redis 有序集合(ZSet)用于存储有序元素集合,并按关联分数进行排序。ZSet 的用法步骤包括:1. 创建 ZSet;2. 添加成员;3. 获取成员分数;4. 获取排名;5. 获取排名范围的成员;6. 删除成员;7. 获取元素个数;8. 获取分数范围内的成员个数。
