目录
序言
介绍
归纳这些方法
我发现几乎没有人使用**=
首页 后端开发 Python教程 详解增强算术赋值“-=”操作

详解增强算术赋值“-=”操作

Sep 11, 2020 pm 05:11 PM
python 赋值

详解增强算术赋值“-=”操作

相关学习推荐:python教程

序言

本文是 Python语法糖 系列文章之一。最新的源代码可以在 desugar 项目中找到(github.com/brettcannon…

介绍

Python 有一种叫做增强算术赋值(augmented arithmetic assignment)的东西。可能你不熟悉这个叫法,其实就是在做数学运算的同时进行赋值,例如 a -= b 就是减法的增强算术赋值。

增强赋值是在 Python 2.0 版本中 加入进来的。(译注:在 PEP-203 中引入)

剖析-=

因为 Python 不允许覆盖式赋值,所以相比其它有特殊/魔术方法的操作,它实现增强赋值的方式可能跟你想象的不完全一样。

首先,要知道a -= b在语义上与 a = a-b 相同。但也要意识到,如果你预先知道要将一个对象赋给一个变量名,相比a - b 的盲操作,就可能会更高效。

例如,最起码的好处是可以避免创建一个新对象:如果可以就地修改一个对象,那么返回 self,就比重新构造一个新对象要高效。

因此,Python 提供了一个__isub__() 方法。如果它被定义在赋值操作的左侧(通常称为 lvalue),则会调用右侧的值(通常称为 rvalue )。所以对于a -= b ,就会尝试去调用 a.__isub__(b)。

如果调用的结果是 NotImplemented,或者根本不存在结果,那么 Python 会退回到常规的二元算术运算:a - b。(译注:作者关于二元运算的文章,译文在此)

最终无论用了哪种方法,返回值都会被赋值给 a。

下面是简单的伪代码,a -= b 被分解成:

# 实现 a -= b 的伪代码if hasattr(a, "__isub__"):
    _value = a.__isub__(b)    if _value is not NotImplemented:
        a = _value    else:
        a = a - b    del _value else:
     a = a - b复制代码
登录后复制

归纳这些方法

由于我们已经实现了二元算术运算,因此归纳增强算术运算并不太复杂。

通过传入二元算术运算函数,并做一些自省(以及处理可能发生的 TypeError),它可以被漂亮地归纳成:

def _create_binary_inplace_op(binary_op: _BinaryOp) -> Callable[[Any, Any], Any]:

    binary_operation_name = binary_op.__name__[2:-2]
    method_name = f"__i{binary_operation_name}__"
    operator = f"{binary_op._operator}="

    def binary_inplace_op(lvalue: Any, rvalue: Any, /) -> Any:
        lvalue_type = type(lvalue)        try:
            method = debuiltins._mro_getattr(lvalue_type, method_name)        except AttributeError:            pass
        else:
            value = method(lvalue, rvalue)            if value is not NotImplemented:                return value        try:            return binary_op(lvalue, rvalue)        except TypeError as exc:            # If the TypeError is due to the binary arithmetic operator, suppress
            # it so we can raise the appropriate one for the agumented assignment.
            if exc._binary_op != binary_op._operator:                raise
        raise TypeError(            f"unsupported operand type(s) for {operator}: {lvalue_type!r} and {type(rvalue)!r}"
        )

    binary_inplace_op.__name__ = binary_inplace_op.__qualname__ = method_name
    binary_inplace_op.__doc__ = (        f"""Implement the augmented arithmetic assignment `a {operator} b`."""
    )    return binary_inplace_op复制代码
登录后复制

这使得定义的 -= 支持 _create_binary_inplace_op(__ sub__),且可以推断出其它内容:函数名、调用什么 __i*__ 函数,以及当二元算术运算出问题时,该调用哪个可调用对象。

我发现几乎没有人使用**=

在写本文的代码时,我碰上了 **= 的一个奇怪的测试错误。在所有确保 __pow__ 会被适当地调用的测试中,有个测试用例对于 Python 标准库中的operator 模块却是失败。

我的代码通常没问题,如果代码与 CPython 的代码之间存在差异,通常会意味着是我哪里出错了。

但是,无论我多么仔细地排查代码,我都无法定位出为什么我的测试会通过,而标准库则失败。

我决定深入地了解 CPython 内部发生了什么。从反汇编字节码开始:

>>> def test(): a **= b... >>> import dis>>> dis.dis(test)  1           0 LOAD_FAST                0 (a)              2 LOAD_GLOBAL              0 (b)              4 INPLACE_POWER              6 STORE_FAST               0 (a)              8 LOAD_CONST               0 (None)             10 RETURN_VALUE复制代码
登录后复制

通过它,我找到了在 eval 循环中的INPLACE_POWER

        case TARGET(INPLACE_POWER): {
            PyObject *exp = POP();
            PyObject *base = TOP();
            PyObject *res = PyNumber_InPlacePower(base, exp, Py_None);
            Py_DECREF(base);
            Py_DECREF(exp);
            SET_TOP(res);            if (res == NULL)                goto error;
            DISPATCH();
        }复制代码
登录后复制

出处:github.com/python/cpyt…

然后找到PyNumber_InPlacePower()

PyObject *PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z){    if (v->ob_type->tp_as_number &&
        v->ob_type->tp_as_number->nb_inplace_power != NULL) {        return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
    }    else {        return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
    }
}复制代码
登录后复制

出处:github.com/python/cpyt…

松了口气~代码显示如果定义了__ipow__,则会调用它,但是只在没有__ipow__ 时,才会调用__pow__。

然而,正确的做法应该是:如果调用__ipow__ 时出问题,返回了 NotImplemented 或者根本不存在返回,那么就应该调用 __pow__ 和__rpow__。

换句话说,当存在__ipow__ 时,以上代码会意外地跳过 a**b 的后备语义!

实际上,大约11个月前,这个问题被部分地发现,并提交了 bug。我修复了该问题,并在 python-dev 上作了说明。

截至目前,这似乎会在 Python 3.10 中修复,我们还需要在 3.8 和 3.9 的文档中添加关于 **= 有 bug 的通知(该问题可能很早就有了,但较旧的 Python 版本已处于仅安全维护模式,因此文档不会变更)。

修复的代码很可能不会被移植,因为它是语义上的变化,并且很难判断是否有人意外地依赖了有问题的语义。但是这个问题花了很长时间才被注意到,这就表明 **= 的使用并不广泛,否则问题早就被发现了。

想了解更多编程学习,敬请关注php培训栏目!

以上是详解增强算术赋值“-=”操作的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles