大数据的起源是什么?
大数据的起源是“互联网”。大数据产业是指建立在对互联网、物联网、云计算等渠道广泛、大量数据资源收集基础上的数据存储、价值提炼、智能处理和分发的信息服务业。
大数据的起源是“互联网”。
随着智能制造的推进,人工智能技术也得到了快速的发展,而大数据的最大应用就体现在人工智能技术中,因为大数据强调的不是因果关系,而是关联关系,通过一系列数据的分析判断有无关联,促进智能制造的推进,本文科普一下“大数据”的来龙去脉。
大数据概念最初起源于美国,是由思科、威睿、甲骨文、IBM等公司倡议发展起来的。大约从2009年始,“大数据”成为互联网信息技术行业的流行词汇。事实上,大数据产业是指建立在对互联网、物联网、云计算等渠道广泛、大量数据资源收集基础上的数据存储、价值提炼、智能处理和分发的信息服务业,大数据企业大多致力于让所有用户几乎能够从任何数据中获得可转换为业务执行的洞察力,包括之前隐藏在非结构化数据中的洞察力。
最早提出“大数据时代已经到来”的机构是全球知名咨询公司麦肯锡。2011年,麦肯锡在题为《海量数据,创新、竞争和提高生成率的下一个新领域》的研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
大数据是一个不断演变的概念,当前的兴起,是因为从IT技术到数据积累,都已经发生重大变化。仅仅数年时间,大数据就从大型互联网公司高管嘴里的专业术语,演变成决定我们未来数字生活方式的重大技术命题。2012年,联合国发表大数据政务白皮书《大数据促发展:挑战与机遇》;EMC、IBM、Oracle等跨国IT巨头纷纷发布大数据战略及产品;几乎所有世界级的互联网企业,都将业务触角延伸至大数据产业;无论社交平台逐鹿、电商价格大战还是门户网站竞争,都有它的影子;美国政府投资2亿美元启动“大数据研究和发展计划”,更将大数据上升到国家战略层面。2013年,大数据正由技术热词变成一股社会浪潮,将影响社会生活的方方面面。
关于“大数据”概念产生的来龙去脉
1、“大数据”的名称来自于未来学家托夫勒所著的《第三次浪潮》
尽管“大数据”这个词直到最近才受到人们的高度关注,但早在1980年,著名未来学家托夫勒在其所著的《第三次浪潮》中就热情地将“大数据”称颂为“第三次浪潮的华彩乐章”。《自然》杂志在2008年9月推出了名为“大数据”的封面专栏。从2009年开始“大数据”才成为互联网技术行业中的热门词汇。
2、最早应用“大数据”的是麦肯锡公司(McKinsey)
对“大数据”进行收集和分析的设想,来自于世界著名的管理咨询公司麦肯锡公司。麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在2011年6月发布了关于“大数据”的报告,该报告对“大数据”的影响、关键技术和应用领域等都进行了详尽的分析。麦肯锡的报告得到了金融界的高度重视,而后逐渐受到了各行各业关注。
3、“大数据”的特点由维克托·迈尔-舍恩伯格和肯尼斯·库克耶在《“大数据”时代》中提出
维克托·迈尔-舍恩伯格和肯尼斯·克耶编写的《大数据时代》中提出:“大数据”的4V特点:Volume(数据量大)、Velocity(输入和处理速度快)、Variety(数据多样性)、Value(价值密度低)。这些特点基本上得到了大家的认可,凡提到“大数据”特点的文章,基本上采用了这4个特点。
4、在云计算出现之后“大数据”才凸显其真正价值
自从有了云计算服务器,“大数据”才有了可以运行的轨道,才可以实现其真正的价值。有人就形象地将各种“大数据”的应用比作一辆辆“汽车”,支撑起这些“汽车”运行的“高速公路”就是云计算。最著名的实例就是Google搜索引擎。面对海量Web数据,Google于2006年首先提出云计算的概念。支撑Google内部各种“大数据”应用的,正是Google公司自行研发的云计算服务器。
想要查阅更多相关文章,请访问PHP中文网!!
以上是大数据的起源是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

大数据结构处理技巧:分块:分解数据集并分块处理,减少内存消耗。生成器:逐个产生数据项,无需加载整个数据集,适用于无限数据集。流:逐行读取文件或查询结果,适用于大文件或远程数据。外部存储:对于超大数据集,将数据存储在数据库或NoSQL中。

AEC/O(Architecture,Engineering&Construction/Operation)是指是建筑行业中提供建筑设计、工程设计、施工及运营的综合服务。2024年,AEC/O行业在技术进步中面临着不断变化的挑战。今年预计将整合先进技术,预示着设计、建造和运营的范式转变。为了应对这些变化,行业正在重新定义工作流程,调整优先级,增强合作,以适应快速变化世界的需求。AEC/O行业以下五大趋势将成为2024年的关键主题,推荐其走向更加一体化、响应迅速和可持续的未来:一体化供应链、智能工

在互联网时代,大数据成为了一种新的资源,伴随着大数据分析技术的不断提升,大数据程序设计需求也愈发迫切。而C++作为一种广泛应用的编程语言,其在大数据编程方面的独特优势也日益凸显。下面将分享我在C++大数据编程方面的实践经验。一、选择合适的数据结构选择合适的数据结构是编写高效大数据程序的重要环节。C++中有多种数据结构可以供我们使用,如数组、链表、树、哈希表等

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

在当今大数据时代,数据处理和分析已经成为各行业发展的重要支撑。而Go语言作为一种开发效率高、性能优越的编程语言,也逐渐被大数据领域所关注。然而,相比于其他语言如Java、Python等,Go语言在大数据框架方面的支持相对不足,这给一些开发者带来了困扰。本文将探讨Go语言大数据框架缺失的主要原因,并提出相应的解决方案,同时结合具体的代码示例进行说明。一、Go语

易知微2023年秋季产品发布会已经圆满结束了!让我们一起回顾一下发布会的精彩亮点吧!一、智能普惠开放,让数字孪生成为生产力袋鼠云联合创始人、易知微CEO宁海元开场致辞提出:在今年公司的战略会上,我们把产品研发的主要方向定位成「智能普惠开放」三大核心能力,围绕「智能普惠开放」这三大核心关键词,我们进一步提出“让数字孪生成为生产力”的发展目标。二、EasyTwin:探索更易用的数字孪生新引擎1、从0.1到1.0,持续探索数字孪生融合渲染引擎有更优解以成熟的3D编辑模式、便捷的交互蓝图、海量的模型资产

Go语言作为一种开源编程语言,在近年来逐渐受到了广泛的关注和使用。它以其简洁、高效的特性,以及强大的并发处理能力而备受程序员青睐。在大数据处理领域中,Go语言也具有很强的潜力,可以用来处理海量数据、优化性能,并且可以很好地与各种大数据处理工具和框架进行集成。在本文中,我们将介绍一些Go语言大数据处理的基本概念和技巧,并通过具体的代码示例来展示如何利用Go语言

在大数据处理中,采用内存数据库(如Aerospike)可以提升C++应用程序的性能,因为它将数据存储在计算机内存中,消除了磁盘I/O瓶颈,显着提高了数据访问速度。实战案例表明,使用内存数据库的查询速度比使用硬盘数据库快几个数量级。