首页 后端开发 Python教程 安利大家一个Python大数据分析神器

安利大家一个Python大数据分析神器

Dec 30, 2020 pm 05:41 PM
python 大数据 数据分析

python视频教程栏目介绍一个大数据分析神器

安利大家一个Python大数据分析神器

推荐(免费):python视频教程

对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。

1、什么是Dask?

PandasNumpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。

Dask是开源免费的。它是与其他社区项目(如Numpy,Pandas和Scikit-Learn)协调开发的。

官方:https://dask.org/

Dask支持PandasDataFrameNumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。

基本上,只要编写一次代码,使用普通的Pythonic语法,就可在本地运行或部署到多节点集群上。这本身就是一个很牛逼的功能了,但这还不是最牛逼的。

我觉得Dask的最牛逼的功能是:它兼容大部分我们已经在用的工具,并且只需改动少量的代码,就可以利用自己笔记本电脑上已有的处理能力并行运行代码。而并行处理数据就意味着更少的执行时间,更少的等待时间和更多的分析时间。

下面这个就是Dask进行数据处理的大致流程。
2f4ca94ca802585132464ae7a20a3a8.png

2、Dask支持哪些现有工具?

这一点也是我比较看中的,因为Dask可以与Python数据处理和建模的库包兼容,沿用库包的API,这对于Python使用者来说学习成本是极低的。而像HadoopSpark这种大数据处理是有很高的学习门槛和时间成本的。

目前,Dask可支持pandasNumpySklearnXGBoostXArrayRAPIDS等等,光是这几项我觉得就足够用了,至少对于常用的数据处理、建模分析是完全覆盖得掉的。
a4d1fd2bd472fee604a99f03976a305.png

3、Dask安装

可以使用 conda 或者 pip,或从源代码安装dask

conda install dask
登录后复制

因为dask有很多依赖,所以为了快速安装也可用下面代码,将安装运行Dask所需的最少依赖关系集。

conda install dask-core
登录后复制

再有就是通过源来安装。

git clone https://github.com/dask/dask.git
cd dask
python -m pip install .
登录后复制

4、Dask如何使用?

Numpy、pandas

Dask引入了3个并行集合,它们可以存储大于RAM的数据,这些集合有DataFrameBagsArrays。这些集合类型中的每一个都能够使用在RAM和硬盘之间分区的数据,以及分布在群集中多个节点上的数据。

Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。

import dask.array as da
x = da.random.uniform(low=0, high=10, size=(10000, 10000),  # normal numpy code
                      chunks=(1000, 1000))  # break into chunks of size 1000x1000

y = x + x.T - x.mean(axis=0)  # Use normal syntax for high level algorithms

# DataFrames
import dask.dataframe as dd
df = dd.read_csv('2018-*-*.csv', parse_dates='timestamp',  # normal Pandas code
                 blocksize=64000000)  # break text into 64MB chunks

s = df.groupby('name').balance.mean()  # Use normal syntax for high level algorithms

# Bags / lists
import dask.bag as db
b = db.read_text('*.json').map(json.loads)
total = (b.filter(lambda d: d['name'] == 'Alice')
          .map(lambda d: d['balance'])
          .sum())
登录后复制

这些高级接口在略微变化的情况下复制了标准接口。对于原始项目中的大部分API,这些接口会自动为我们并行处理较大的数据集,实现上不是很复杂,对照Dask的doc文档即可一步步完成。

Delayed

下面说一下DaskDelay 功能,非常强大。

Dask.delayed是一种并行化现有代码的简单而强大的方法。之所以被叫做delayed是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。

有时问题用已有的dask.arraydask.dataframe可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed界面并行化自定义算法。例如下面这个例子。

def inc(x):
    return x + 1

def double(x):
    return x * 2

def add(x, y):
    return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:
    a = inc(x)
    b = double(x)
    c = add(a, b)
    output.append(c)

total = sum(output)
45
登录后复制

上面代码在单个线程中按顺序运行。但是,我们看到其中很多可以并行执行。Dask delayed函数可修饰incdouble这些函数,以便它们可延迟运行,而不是立即执行函数,它将函数及其参数放入计算任务图中。

我们简单修改代码,用delayed函数包装一下。

import dask

output = []
for x in data:
    a = dask.delayed(inc)(x)
    b = dask.delayed(double)(x)
    c = dask.delayed(add)(a, b)
    output.append(c)

total = dask.delayed(sum)(output)
登录后复制

代码运行后incdoubleaddsum都还没有发生,而是生成一个计算的任务图交给了total。然后我们用visualizatize看下任务图。

total.visualize()
登录后复制

d538c247ad8ab6ccd08d350e5b4c405.png

上图明显看到了并行的可能性,所以毫不犹豫,使用compute进行并行计算,这时才完成了计算。

>>> total.compute()
45
登录后复制

由于数据集较小无法比较时间,这里只介绍下使用方法,具体可自己动手实践下。

Sklearn机器学习

关于机器学习的并行化执行,由于内容较多,东哥会在另一篇文章展开。这里简单说下一下dask-learn

dask-learn项目是与Sklearn开发人员协作完成的。现在可实现并行化有Scikit-learnPipelineGridsearchCVRandomSearchCV以及这些的变体,它们可以更好地处理嵌套的并行操作。

因此,如果你将sklearn替换为dklearn,那么速度将会提升很多。

# from sklearn.grid_search import GridSearchCV
  from dklearn.grid_search import GridSearchCV
# from sklearn.pipeline import Pipeline
  from dklearn.pipeline import Pipeline
下面是一个使用Pipeline的示例,其中应用了PCA和逻辑回归。
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=10000,
                           n_features=500,
                           n_classes=2,
                           n_redundant=250,
                           random_state=42)

from sklearn import linear_model, decomposition
from sklearn.pipeline import Pipeline
from dklearn.pipeline import Pipeline

logistic = linear_model.LogisticRegression()
pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca),
                       ('logistic', logistic)])


grid = dict(pca__n_components=[50, 100, 150, 250],
            logistic__C=[1e-4, 1.0, 10, 1e4],
            logistic__penalty=['l1', 'l2'])

# from sklearn.grid_search import GridSearchCV
from dklearn.grid_search import GridSearchCV

estimator = GridSearchCV(pipe, grid)

estimator.fit(X, y)
登录后复制

结果是:sklearn会在40秒钟左右执行此计算,而dask-learn替代品大约需要10秒钟。
另外,如果添加以下代码可以连接到集群,通过Client可以展示整个计算过程的dashboard,由Bokeh实现。

from dask.distributed import Client
c = Client('scheduler-address:8786')
登录后复制

28295caa28bee6b9ee03a735ce7d68f.png

5、总结

以上就是Dask的简单介绍,Dask的功能是非常强大的,且说明文档也非常全,既有示例又有解释。感兴趣的朋友可以自行去官网或者GitHub学习,东哥下次分享使用Dask进行机器学习的一些实例。

以上是安利大家一个Python大数据分析神器的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

手机XML转PDF,转换速度快吗? 手机XML转PDF,转换速度快吗? Apr 02, 2025 pm 10:09 PM

手机XML转PDF的速度取决于以下因素:XML结构的复杂性手机硬件配置转换方法(库、算法)代码质量优化手段(选择高效库、优化算法、缓存数据、利用多线程)总体而言,没有绝对的答案,需要根据具体情况进行优化。

怎么在手机上把XML文件转换为PDF? 怎么在手机上把XML文件转换为PDF? Apr 02, 2025 pm 10:12 PM

不可能直接在手机上用单一应用完成 XML 到 PDF 的转换。需要使用云端服务,通过两步走的方式实现:1. 在云端转换 XML 为 PDF,2. 在手机端访问或下载转换后的 PDF 文件。

C语言 sum 的作用是什么? C语言 sum 的作用是什么? Apr 03, 2025 pm 02:21 PM

C语言中没有内置求和函数,需自行编写。可通过遍历数组并累加元素实现求和:循环版本:使用for循环和数组长度计算求和。指针版本:使用指针指向数组元素,通过自增指针遍历高效求和。动态分配数组版本:动态分配数组并自行管理内存,确保释放已分配内存以防止内存泄漏。

有没有手机APP可以将XML转换成PDF? 有没有手机APP可以将XML转换成PDF? Apr 02, 2025 pm 09:45 PM

没有APP可以将所有XML文件转成PDF,因为XML结构灵活多样。XML转PDF的核心是将数据结构转换为页面布局,需要解析XML并生成PDF。常用的方法包括使用Python库(如ElementTree)解析XML,并利用ReportLab库生成PDF。对于复杂XML,可能需要使用XSLT转换结构。性能优化时,考虑使用多线程或多进程,并选择合适的库。

手机上如何将XML转换成PDF? 手机上如何将XML转换成PDF? Apr 02, 2025 pm 10:18 PM

直接在手机上将XML转换为PDF并不容易,但可以借助云端服务实现。推荐使用轻量级手机App上传XML文件并接收生成的PDF,配合云端API进行转换。云端API使用无服务器计算服务,选择合适的平台至关重要。处理XML解析和PDF生成时需要考虑复杂性、错误处理、安全性和优化策略。整个过程需要前端App与后端API协同工作,需要对多种技术有所了解。

xml怎么转换成图片 xml怎么转换成图片 Apr 03, 2025 am 07:39 AM

可以将 XML 转换为图像,方法是使用 XSLT 转换器或图像库。XSLT 转换器:使用 XSLT 处理器和样式表,将 XML 转换为图像。图像库:使用 PIL 或 ImageMagick 等库,从 XML 数据创建图像,例如绘制形状和文本。

如何在手机上高质量地将XML转换成PDF? 如何在手机上高质量地将XML转换成PDF? Apr 02, 2025 pm 09:48 PM

在手机上高质量地将XML转换成PDF需要:使用无服务器计算平台在云端解析XML并生成PDF。选择高效的XML解析器和PDF生成库。正确处理错误。充分利用云端计算能力,避免在手机上进行繁重任务。根据需求调整复杂度,包括处理复杂的XML结构、生成多页PDF和添加图片。打印日志信息以帮助调试。优化性能,选择高效的解析器和PDF库,并可能使用异步编程或预处理XML数据。确保良好的代码质量和可维护性。

如何在安卓手机上将XML转换成PDF? 如何在安卓手机上将XML转换成PDF? Apr 02, 2025 pm 09:51 PM

直接在安卓手机上将 XML 转换为 PDF 无法通过自带功能实现。需要通过以下步骤曲线救国:将 XML 数据转换为 PDF 生成器识别的格式(如文本或 HTML);使用 HTML 生成库(如 Flying Saucer)将 HTML 转换为 PDF。

See all articles