目录
1、读请求长时阻塞
2、读请求并发量过高
3、多服务实例部署的请求路由
4、热点商品的路由问题,导致请求的倾斜
首页 Java Java基础 java实现保证缓存与数据库的双写的一致性

java实现保证缓存与数据库的双写的一致性

Dec 30, 2020 pm 05:51 PM
mysql sql 数据库

java基础教程栏目保证缓存与数据库的双写的一致性

java实现保证缓存与数据库的双写的一致性

请抬起你的头,我的公主,不然皇冠会掉下来的。

分布式缓存是现在很多分布式应用中必不可少的组件,但是用到了分布式缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?

Cache Aside Pattern

最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern。  
读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。

更新的时候,先更新数据库,然后再删除缓存。

为什么是删除缓存,而不是更新缓存?

原因很简单,很多时候,在复杂点的缓存场景,缓存不单单是数据库中直接取出来的值。

比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据并进行运算,才能计算出缓存最新的值的。

另外更新缓存的代价有时候是很高的。是不是说,每次修改数据库的时候,都一定要将其对应的缓存更新一份?也许有的场景是这样,但是对于比较复杂的缓存数据计算的场景,就不是这样了。如果你频繁修改一个缓存涉及的多个表,缓存也频繁更新。但是问题在于,这个缓存到底会不会被频繁访问到?

举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次、100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有大量的冷数据。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低,用到缓存才去算缓存。

其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatis,hibernate,都有懒加载思想。查询一个部门,部门带了一个员工的 list,没有必要说每次查询部门,都里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。

最初级的缓存不一致问题及解决方案

问题:先修改数据库,再删除缓存。如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。
f0459c3e196eb791c30cebb2305877a.png

解决思路:先删除缓存,再修改数据库。如果数据库修改失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中。

比较复杂的数据不一致问题分析

数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。随后数据变更的程序完成了数据库的修改。

完了,数据库和缓存中的数据不一样了。。。

为什么上亿流量高并发场景下,缓存会出现这个问题?

只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题。其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就 1 万次,那么很少的情况下,会出现刚才描述的那种不一致的场景。但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况。

解决方案如下:

更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。

一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。

这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。

待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中。

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。

高并发的场景下,该解决方案要注意的问题:

1、读请求长时阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。

该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库。务必通过一些模拟真实的测试,看看更新数据的频率是怎样的。

另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作。如果一个内存队列里居然会挤压 100 个商品的库存修改操作,每隔库存修改操作要耗费 10ms 去完成,那么最后一个商品的读请求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到数据,这个时候就导致读请求的长时阻塞。

一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会 hang 多少时间,如果读请求在 200ms 返回,如果你计算过后,哪怕是最繁忙的时候,积压 10 个更新操作,最多等待 200ms,那还可以的。

如果一个内存队列中可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。

其实根据之前的项目经验,一般来说,数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。像这种针对读高并发、读缓存架构的项目,一般来说写请求是非常少的,每秒的 QPS 能到几百就不错了。

实际粗略测算一下

如果一秒有 500 的写操作,如果分成 5 个时间片,每 200ms 就 100 个写操作,放到 20 个内存队列中,每个内存队列,可能就积压 5 个写操作。每个写操作性能测试后,一般是在 20ms 左右就完成,那么针对每个内存队列的数据的读请求,也就最多 hang 一会儿,200ms 以内肯定能返回了。

经过刚才简单的测算,我们知道,单机支撑的写 QPS 在几百是没问题的,如果写 QPS 扩大了 10 倍,那么就扩容机器,扩容 10 倍的机器,每个机器 20 个队列。

2、读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时 hang 在服务上,看服务能不能扛的住,需要多少机器才能扛住最大的极限情况的峰值。

但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。

3、多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过 Nginx 服务器路由到相同的服务实例上。

比如说,对同一个商品的读写请求,全部路由到同一台机器上。可以自己去做服务间的按照某个请求参数的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。

4、热点商品的路由问题,导致请求的倾斜

万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能会造成某台机器的压力过大。就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以其实要根据业务系统去看,如果更新频率不是太高的话,这个问题的影响并不是特别大,但是的确可能某些机器的负载会高一些。

以上是java实现保证缓存与数据库的双写的一致性的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

RDS MySQL 与 Redshift 零 ETL 集成 RDS MySQL 与 Redshift 零 ETL 集成 Apr 08, 2025 pm 07:06 PM

数据集成简化:AmazonRDSMySQL与Redshift的零ETL集成高效的数据集成是数据驱动型组织的核心。传统的ETL(提取、转换、加载)流程复杂且耗时,尤其是在将数据库(例如AmazonRDSMySQL)与数据仓库(例如Redshift)集成时。然而,AWS提供的零ETL集成方案彻底改变了这一现状,为从RDSMySQL到Redshift的数据迁移提供了简化、近乎实时的解决方案。本文将深入探讨RDSMySQL零ETL与Redshift集成,阐述其工作原理以及为数据工程师和开发者带来的优势。

mysql 能处理多个连接吗 mysql 能处理多个连接吗 Apr 08, 2025 pm 03:51 PM

MySQL能处理多个并发连接,利用多线程/多进程为每个客户端请求分配独立执行环境,确保不受干扰。但并发连接数量受系统资源、MySQL配置、查询性能、存储引擎和网络环境影响。优化需要考虑代码层面(编写高效SQL)、配置层面(调整max_connections)、硬件层面(提升服务器配置)等多方面因素。

mysql 是否更改表锁定表 mysql 是否更改表锁定表 Apr 08, 2025 pm 05:06 PM

MySQL修改表结构时,通常使用元数据锁,可能导致锁表。为了减少锁的影响,可采取以下措施:1. 使用在线DDL保持表可用;2. 分批执行复杂修改;3. 在小表或非高峰期操作;4. 使用PT-OSC工具实现更精细的控制。

MySQL 中的查询优化对于提高数据库性能至关重要,尤其是在处理大型数据集时 MySQL 中的查询优化对于提高数据库性能至关重要,尤其是在处理大型数据集时 Apr 08, 2025 pm 07:12 PM

1.使用正确的索引索引通过减少扫描的数据量来加速数据检索select*fromemployeeswherelast_name='smith';如果多次查询表的某一列,则为该列创建索引如果您或您的应用根据条件需要来自多个列的数据,则创建复合索引2.避免选择*仅选择那些需要的列,如果您选择所有不需要的列,这只会消耗更多的服务器内存并导致服务器在高负载或频率时间下变慢例如,您的表包含诸如created_at和updated_at以及时间戳之类的列,然后避免选择*,因为它们在正常情况下不需要低效查询se

mysql 主键可以为 null mysql 主键可以为 null Apr 08, 2025 pm 03:03 PM

MySQL 主键不可以为空,因为主键是唯一标识数据库中每一行的关键属性,如果主键可以为空,则无法唯一标识记录,将会导致数据混乱。使用自增整型列或 UUID 作为主键时,应考虑效率和空间占用等因素,选择合适的方案。

mysql 可以在 android 上运行吗 mysql 可以在 android 上运行吗 Apr 08, 2025 pm 05:03 PM

MySQL无法直接在Android上运行,但可以通过以下方法间接实现:使用轻量级数据库SQLite,由Android系统自带,无需单独服务器,资源占用小,非常适合移动设备应用。远程连接MySQL服务器,通过网络连接到远程服务器上的MySQL数据库进行数据读写,但存在网络依赖性强、安全性问题和服务器成本等缺点。

mysql 能返回 json 吗 mysql 能返回 json 吗 Apr 08, 2025 pm 03:09 PM

MySQL 可返回 JSON 数据。JSON_EXTRACT 函数可提取字段值。对于复杂查询,可考虑使用 WHERE 子句过滤 JSON 数据,但需注意其性能影响。MySQL 对 JSON 的支持在不断增强,建议关注最新版本及功能。

无法以 root 身份登录 mysql 无法以 root 身份登录 mysql Apr 08, 2025 pm 04:54 PM

无法以 root 身份登录 MySQL 的原因主要在于权限问题、配置文件错误、密码不符、socket 文件问题或防火墙拦截。解决方法包括:检查配置文件中 bind-address 参数是否正确配置。查看 root 用户权限是否被修改或删除,并进行重置。验证密码是否准确无误,包括大小写和特殊字符。检查 socket 文件权限设置和路径。检查防火墙是否阻止了 MySQL 服务器的连接。

See all articles