首页 后端开发 Python教程 python随机漫步讲解

python随机漫步讲解

Jan 15, 2021 am 10:06 AM
python

python随机漫步讲解

免费学习推荐:python视频教程

随机漫步

这次我们将使用python生成随机漫步数据,然后用matplotlib的方式将这些数据呈现出来。
随机漫步每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的。你可以这样认为,随机漫步就是蚂蚁在晕头转向的情况下,每次都沿随机的方向所经过的路径。

创建RandomWalk()类

为了模拟随机漫步,我们创建一个RandownWalk的类,它随机选择前进的方向。这个类需要三个属性,其中一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x坐标和y坐标。
RandomWalk类只包含两个方法,init()和fill_walk(),其中后者计算随机漫步经过的所有点,下面是__init__()

from random import choiceclass RandomWalk():
    """一个生成随机漫步数据的类"""
    def __init__(self, number_points=5000):
        """初始化随机漫步的属性"""
        self.number_points = number_points        # 所有随机漫步都始于(0,0)
        self.x_values = [0]
        self.y_values = [0]
登录后复制

为做出随机决策,我们将所有可能的选择都存储到一个列表中,并在每次做出决策时都使用choice()来决定使用哪种选择,然后我们将随机漫步的默认点数设置为5000,然后我们创建了两个用于存储x值和y值的列表,并让每次漫步都是从(0,0)开始出发。

选择方向

    def fill_walk(self):
        """计算随机漫步中包含的所有点"""

        # 不断漫步,直到列表达到指定的长度
        while len(self.x_values) < self.number_points:
            # 决定前进方向以及沿这个方向前进的距离
            x_direction = choice([1, -1])
            x_distance = choice([0, 1, 2, 3, 4])
            x_step = x_direction * x_distance

            y_direction = choice([1, -1])
            y_distance = choice([0, 1, 2, 3, 4])
            y_step = y_direction * y_distance            # 计算下一个点的x和y值
            next_x = self.x_values[-1] + x_step
            next_y = self.y_values[-1] + y_step

            self.x_values.append(next_x)
            self.y_values.append(next_y)
登录后复制

我们建立了一个循环,这个循环不断进行,直到漫步包含所有需数量的点。这个方法的主要部分告诉python如何模拟四种漫步决定:向左走还是向右走?向上走还是向下走?沿着指定的方向走多远?
我们使用choice([1, -1])给x_direction选择一个值,结果要么是表示向右走的1,要么是表示向左走的-1,接下来choice([0, 1, 2, 3, 4])随机选择一个0~4之间的数,告诉python沿着指定方向走多远。
我们将移动方向乘以移动距离,以确定沿x轴和y轴移动的距离。如果x_step为正,就将向右移动,为负向左移动,而为0将垂直移动,y_step为正向上移动,为负向下移动,为0则水平移动,如果两个都为0那么就以为着在原地踏步,我们拒绝这种情况,接着执行下一次循环。
为获取随机漫步的下一个点的x值,我们将x_step和x_values的最后一个值相加,对于y值也做同样的处理。获得下一个点的x值和y值之后,我们将它分别附加到列表x_values和y_values的末尾。

绘制随机漫步图

我们将上面创建RandomWalk类的py文件命名为random_walk.py。
下面的代码将随机漫步的所有点都绘制出来:

import matplotlib.pyplot as pltfrom random_walk import RandomWalk# 创建一个RandWalk实例,并将其包含的点都绘制出来rw = RandomWalk(5000)rw.fill_walk()plt.scatter(rw.x_values, rw.y_values, s=15)plt.show()
登录后复制

我们首先导入了模块pyplot和RandomWalk类,然后创建了一个RandomWalk实例,并将其存储到rw中,再调用fill_walk(),下图就是显示了包含了5000个点的随机漫步图。在这里插入图片描述

模拟多次随机漫步

每次随机漫步都不相同,因此探索可能生成的各种模式很有趣。在不多次运行程序的情况下使用前面的代码模拟多次随机漫步,一种办法就是将前面的代码放进一个while循环中,如下所示:

import matplotlib.pyplot as pltfrom random_walk import RandomWalkwhile True:
    # 创建一个RandWalk实例,并将其包含的点都绘制出来
    rw = RandomWalk(5000)
    rw.fill_walk()

    plt.scatter(rw.x_values, rw.y_values, s=1)
    plt.show()

    keep_running = input('Make another walk? (y/n) : ')
    if keep_running == 'n':
        break
登录后复制

这些代码模拟一次随机漫步,如果你输入y则再继续模拟生成一次随机漫步,输入n的话就退出程序了。

给点着色

我们将使用颜色映射出漫步中个点的先后顺序,并删除各个点的黑色轮廓,让他们颜色更加明显。为根据漫步中各点的先后顺序进行着色,我们传递参数c,并设置一个列表,其中包含各点的先后顺序。由于这些点都是按顺序绘制的,因此参数c指定的列表只需包含数字1~5000即可。如下所示:

import matplotlib.pyplot as pltfrom random_walk import RandomWalkwhile True:
    # 创建一个RandWalk实例,并将其包含的点都绘制出来
    rw = RandomWalk(5000)
    rw.fill_walk()

    point_numbers = list(range(rw.number_points))

    plt.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, edgecolors='none', s=1)
    plt.show()

    keep_running = input('Make another walk? (y/n) : ')
    if keep_running == 'n':
        break
登录后复制

我们使用range生成了一个数字列表,其中包含的数字与漫步包含的点数相同。接下来,我们将这个列表存储到point_numbers中,以方便使用它设置每个漫步点的颜色。我们将每个参数c设置为point_numbers,指定颜色映射为蓝色,并传递实参edgecolors以删除每个点周围的轮廓。最终的随机漫步图由浅蓝色渐变为深蓝色。如下图所示:
图3

重新绘制起点和终点

除了给随机漫步各个点着色,以指出他们的先后顺序外,如果还能呈现随机漫步的终点和起点就更好了。为此,可在绘制随机漫步图后重新绘制随机漫步的起点和终点。我们让起点和终点变得更大,并显示为不同的颜色,以突出它们,如下所示:

import matplotlib.pyplot as pltfrom random_walk import RandomWalkwhile True:
    # 创建一个RandWalk实例,并将其包含的点都绘制出来
    rw = RandomWalk(5000)
    rw.fill_walk()

    point_numbers = list(range(rw.number_points))

    plt.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, edgecolors='none', s=1)
    # 突出起点和终点
    plt.scatter(0, 0, c='green', edgecolors='none', s=100)
    plt.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none', s=100)
    
    plt.show()

    keep_running = input('Make another walk? (y/n) : ')
    if keep_running == 'n':
        break
登录后复制

图4

为突出起点,我们使用绿色绘制点(0,0),并使其比其它点大。为突出终点,我们在漫步包含的最后一个x值和y值处绘制一个点,使其为红色,并比其它点大。运行代码,将准确知道每次随机漫步的起点和终点。

隐藏坐标轴

下面来隐藏坐标轴,以免我们注意点是坐标轴而不是随机漫步路径。要隐藏坐标做代码如下:

# 隐藏坐标轴plt.axes().get_xaxis().set_visible(False)plt.axes().get_yaxis().set_visible(False)
登录后复制

为修改坐标轴,使用函数plt.axes()来将每条坐标轴的可见性设置为False。图如下:
图5

相关免费学习推荐:python教程(视频)

以上是python随机漫步讲解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1425
52
Laravel 教程
1327
25
PHP教程
1273
29
C# 教程
1252
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

notepad 怎么运行python notepad 怎么运行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

See all articles