目录
一、简单介绍 Bitmaps
二、Bitmaps的操作
Bitmaps 的应用
四、小扩展
首页 数据库 Redis Redis学习之深入了解Bitmaps

Redis学习之深入了解Bitmaps

Feb 07, 2022 am 09:59 AM
redis

本篇文章带大家了解一下Redis中的Bitmaps,详细介绍 Bitmaps 概念,操作以及常见应用,希望对大家有所帮助!

Redis学习之深入了解Bitmaps

Redis版本:6.2.6

一、简单介绍 Bitmaps

位图不是实际的数据类型,而是在 String 类型上定义的一组面向位的操作。由于字符串是二进制安全的 blob,并且它们的最大长度为 512 MB,因此它们适合设置多达 2^32 个不同的位。【相关推荐:Redis视频教程

        上述是Redis官网对 Bitmaps 的介绍,简单理解 Bitmaps 就是 Redis 提供的一系列直接操作 String 的位的指令,比如我们现在有一个字符串 :“a”

127.0.0.1:6379> set k1 a
OK
127.0.0.1:6379> get k1 
"a"
登录后复制

a 的二进制是:0110 0001,我们可以利用 [ GETBIT key offset ]指令,获取这个字符串对应 位 的数值:

127.0.0.1:6379> getbit k1 0
(integer) 0
127.0.0.1:6379> getbit k1 1
(integer) 1
127.0.0.1:6379> getbit k1 2
(integer) 1
127.0.0.1:6379> getbit k1 3
(integer) 0
127.0.0.1:6379> getbit k1 4
(integer) 0
127.0.0.1:6379> getbit k1 5
(integer) 0
127.0.0.1:6379> getbit k1 6
(integer) 0
127.0.0.1:6379> getbit k1 7
(integer) 1
登录后复制

这个指令中的 offset 表示偏移量,如上面展示可以看到,偏移 1 位,2 位,7 位的数值是 1,其他位是 0,对应的二进制就是:0110 0001,这是字符 a 的 ASCII 值。

接下来我们可以利用 [SETBIT key offset value ] 指令,去改变某一位的值,比如:

127.0.0.1:6379> setbit k1 6 1 //偏移6位,置为1
(integer) 0
127.0.0.1:6379> get k1
"c"
登录后复制

如上,我们设置偏移量为 6 的位置数值为 1,这样这个二进制对象就变成了: 0110 0011,对应的就是字符 ”c“ ,我们通过 直接操作字符串的位 改变了字符串的值。

Bitmaps 在redis中是按位操作字符串的工具,根据这个工具,我们可以将字符串当作一组二进制数组来使用,我们举一个简单的例子:

如何记录十亿用户的在线状态?

这里我们 用一串二进制来记录这十亿用户的登录状态,二进制的每一位都代表一个用户,0 代表未登录,1 代表已登录,每次登录或登出都利用 Bitmaps 去更新对应位的数值,最终形成的结果看起来就是这样的:

1.png

我们用上面的一串二进制记录了这十亿用户的登录状态,为什么要这么做? 主要就是节省空间,读取或更新速度快

我们来算一下这种存储方式所需要的存储空间大小:

十亿用户,每一个用户占 1 bit
所需空间 = 1000000000 bit = 1000000000 / 8 / 1024 / 1024 = 119 MB
登录后复制

以 MySQL 为例,存储需要的空间大小:

假设仅有两个字段:用户id,在线状态
用户id为BIGINT类型,大小为:8 Bytes	
在线状态使用TINYINT类型,大小为:1 Bytes	
所需空间 = 1000000000 * (8 + 1) Bytes = 9000000000 Bytes = 8583 MB
登录后复制

差距显而易见,这也很好理解,使用 MySQL 或者Redis 的 Hash 存储,最小单元都是 字节,和直接操作 位 自然无法比较。

以上是对 Redis 的 Bitmaps 的简单介绍,接下来会介绍一下关于 Bitmaps 的基础命令以及应用。

二、Bitmaps的操作

SETBIT

时间复杂度: O(1)

SETBIT key offset value
登录后复制

更新指定 key 的 offset 位置处的值,value 只可以是 0 或 1

需要注意:

1、offset 表示偏移量,最大为 2 32-1((因为最大是512MB,符号占1位)。

2、分配内存,一次分配之后,后续相同的key不会再有分配开销,官网描述:在 2010 款 MacBook Pro 上,设置位数 2 32-1(512MB 分配)大约需要 300 毫秒。

3、返回值,返回对应 offset 操作之前的值。

GETBIT

时间复杂度: O(1)

GETBIT key offset
登录后复制

返回存储在key的字符串值中offset处的位值。

需要注意:

当 key 不存在,或者 offset 超出范围时,返回整数 0

BITCOUNT

时间复杂度: O(n)

BITCOUNT key [start end [BYTE|BIT]]
登录后复制

计算字符串中 1 的数量

示例:
127.0.0.1:6379> set k1 a
OK
127.0.0.1:6379> BITCOUNT k1 
(integer) 3
127.0.0.1:6379> set k1 aa
OK
127.0.0.1:6379> BITCOUNT k1
(integer) 6
127.0.0.1:6379> BITCOUNT k1 0 0 
(integer) 3
127.0.0.1:6379> BITCOUNT k1 0 1
(integer) 6
127.0.0.1:6379> BITCOUNT k1 0 -1
(integer) 6
登录后复制

需要注意:

1、start 和 end 参数指的是Byte,不是bit,官网介绍在7.0版本之后才可以指定 Byte或bit。

2、如果key 不存在,统计出来是0

3、时间复杂度是 O(n),这个n是指start 和 end 参数之间的数据量,所以数据量过大时善用start 和 end,或者多建几个key。

BITOP

时间复杂度: O(n)

BITOP operation destkey key [key ...]
登录后复制

在多个键(包含字符串值)之间执行按位运算并将结果存储在目标键中

其中 operation有 :ANDORXORNOT

destkey是指目标key,将后面的多个 key 进行按位操作后,储存在 destkey 中

// AND,按位与
127.0.0.1:6379> set k1 a
OK
127.0.0.1:6379> set k2 aa
OK
127.0.0.1:6379> set k3 aaa
OK
127.0.0.1:6379> bitop and dk1 k1 k2 k3 
(integer) 3
127.0.0.1:6379> get dk1
"a\x00\x00"
登录后复制

如上面示例,将 k1 ,k2,k3,进行按位与之后结果储存在 dk1 中,dk1 后面的 \x00 是十六进制, a\x00\x00 转换成二进制就是: 0110 0001 0000 0000 0000 0000。

// OR,按位或
127.0.0.1:6379> bitop or dk2 k1 k2 k3 
(integer) 3
127.0.0.1:6379> get dk2
"aaa"
---------------------
//XOR ,按位异或
127.0.0.1:6379> bitop xor dk3 k1 k2 k3 
(integer) 3
127.0.0.1:6379> get dk3
"a\x00a"
---------------------
//NOT,取反 0110 0001 取反 ->  1001 1110  -> 十六进制 \x9e
127.0.0.1:6379> bitop not dk4 k1
(integer) 1
127.0.0.1:6379> get dk4
"\x9e"
登录后复制

BITPOS

时间复杂度: O(N)

BITPOS key bit [start [end [BYTE|BIT]]]
登录后复制

返回字符串中设置为 1 或 0 的第一位的位置。

示例
127.0.0.1:6379> setbit k1 4 1
(integer) 0
127.0.0.1:6379> setbit k1 13  1
(integer) 0
127.0.0.1:6379> bitpos k1 1 
(integer) 4
127.0.0.1:6379> bitpos k1 1 0 0
(integer) 4
127.0.0.1:6379> bitpos k1 1 1 1
(integer) 13
登录后复制

需要注意:

1、这里的 start 、end 参数指的是 Byte,在7.0版本后可以指定 Byte或bit。

2、bitpos 、 setbit 、 getbit 遵循相同的位位置约定。

3、查询 1 时,不存在的 key 或者 对应范围的字符串全是 0 ,返回 -1。

4、查询 0 时,有三种特殊情况:

k2 = 1111 1111  , k3 不存在
---------------------------
// 不指定范围或仅指定 start,且值全是1,这时候会查出来最右侧的1的位置 + 1,可以视为右侧填充了0 
127.0.0.1:6379> BITPOS k2 0
(integer) 8
---------------------------
// 不指定范围或仅指定 start,且key不存在,返回0
127.0.0.1:6379> BITPOS k3 0
(integer) 0
---------------------------
// 指定范围,且范围内没有0,返回 -1
127.0.0.1:6379> BITPOS k2 1 1
(integer) -1
登录后复制

BITFIFLD

BITFIELD key [GET encoding offset] [SET encoding offset value] [INCRBY encoding offset increment] [OVERFLOW WRAP|SAT|FAIL]
登录后复制

该命令将 Redis 字符串视为位数组,并且能够处理不同位宽和任意非(必要)对齐偏移量的特定整数字段,该命令有get、set、incrby操作

就是说可以利用这个命令,按位分段的处理字符串,举个例子:

127.0.0.1:6379> set k1 aaa
OK
登录后复制
aaa
0110 00010110 00010110 0001

k1的二进制如上表格所示,接下来我们使用BITFIFLD命令来操作 k1

GET:

// u8 = 无符号 + 8 位   ;  0 = 从第0位开始
// 获取到的结果就是 : 0110 0001 ,无符号转换成十进制就是 97
127.0.0.1:6379> BITFIELD k1 get u8 0  
1) (integer) 97
登录后复制
// i8 = 有符号 + 8 位   ; 1 = 从第一位开始
// 结果 = 1100 0010 ,带符号转换成十进制就是 -62 (不理解为啥是-62可以看一下补码)
127.0.0.1:6379> BITFIELD k1 get i8 1
1) (integer) -62
登录后复制

SET:

// 将0-7位,变成98,也就是: 0110 0010 ,这对应的就是b,所以第一个字符变成了 b
127.0.0.1:6379> BITFIELD k1 set u8 0 98
1) (integer) 97
127.0.0.1:6379> get k1
"baa"
------------------------------------------
127.0.0.1:6379> BITFIELD k1 set u8 #1 98   // #1的意思是 从第二个 8 位开始
1) (integer) 97
127.0.0.1:6379> get k1
"bba"
登录后复制

INCRBY:递增或者递减

// -1 表示递增或递减的数值,k1 的0-7位 减1,结果是97,k1就变成了 "aba"
127.0.0.1:6379> get k1
"bba"
127.0.0.1:6379> BITFIELD k1 incrby u8 0 -1
1) (integer) 97
127.0.0.1:6379> get k1
"aba"
127.0.0.1:6379> BITFIELD k1 incrby u8 #1 -1
1) (integer) 97
127.0.0.1:6379> get k1
"aaa"
登录后复制

在使用 INCRBY 进行递增或递减操作时,有 溢出控制 ,而且 Redis 提供了三种行为来控制溢出:

WRAP :环绕,在无符号整数的情况下,换行就像对整数可以包含的最大值进行模运算

// 以 u8 为例,无符号,8位,那么最大值是 256
127.0.0.1:6379> BITFIELD k1 get u8 0 
1) (integer) 97
127.0.0.1:6379> BITFIELD k1 overflow WRAP incrby u8 0 256
1) (integer) 97
127.0.0.1:6379> BITFIELD k1 overflow WRAP incrby u8 0 257  // 97 + 257 = 97+257-256 = 98
1) (integer) 98
127.0.0.1:6379> BITFIELD k1 overflow WRAP incrby u8 0 200 // 98 + 200 = 298 - 256 = 42
1) (integer) 42
登录后复制

在有符号的情况下,向上溢出到负值,向下溢出到正值,以 i8 为例 127 + 1 到 -128

127.0.0.1:6379> set k1 aaa
OK
127.0.0.1:6379> BITFIELD k1 get u8 0 
1) (integer) 97
127.0.0.1:6379> BITFIELD k1 incrby i8 0 30
1) (integer) 127
127.0.0.1:6379> BITFIELD k1 incrby i8 0 1 
1) (integer) -128
127.0.0.1:6379> BITFIELD k1 incrby i8 0 -1
1) (integer) 127
登录后复制

SAT: 使用饱和算法,即下溢时设置为最小整数值,溢出时设置为最大整数值。

// u8时,最大255 最小 0
127.0.0.1:6379> set k1 aaa
OK
127.0.0.1:6379> BITFIELD k1 get u8 0 
1) (integer) 97
127.0.0.1:6379> BITFIELD k1 overflow SAT incrby u8 0 20000
1) (integer) 255
127.0.0.1:6379> BITFIELD k1 overflow SAT incrby u8 0 -213123
1) (integer) 0
登录后复制

FAIL:在此模式下,不会对检测到的上溢或下溢执行任何操作。相应的返回值设置为 NULL 以向调用者发出条件信号。就是说,溢出就返回 NUll。

127.0.0.1:6379> set k1 aaa
OK
127.0.0.1:6379> BITFIELD k1 get u8 0
1) (integer) 97
127.0.0.1:6379> BITFIELD k1 overflow FAIL incrby u8 0 200
1) (nil)
127.0.0.1:6379> BITFIELD k1 overflow FAIL incrby u8 0 -98
1) (nil)
登录后复制

另外,以上的 BITFIELD 命令可以多个一起使用:

127.0.0.1:6379> BITFIELD k1 overflow FAIL incrby u8 0 -98  get u8 0 
1) (nil)
2) (integer) 97
登录后复制

BITFIELD_RO

BITFIELD命令的只读变体。它就像原始的BITFIELD一样,但只接受GET子命令并且可以安全地用于只读副本。

Bitmaps 的应用

在上面的描述中,介绍了 Bitmaps 可以记录用户的在线状态,除此之外还可以用他做那些功能呢?

首先我们来总结一下Bitmaps的特点:

  • 只有 0 和 1 两种状态(描述的信息比较局限)
  • 占用的内存非常少
  • 存取速度极快 (set,get操作时间复杂度都是O(1))

基于这些特点,我们可以用 Bitmaps 来判断数据是否存在于某个集合中、也可以用于记录用户的一些行为比如登录或者某个页面的查看,关闭,签到等等,接下来我们举几个比较常见的例子。

日活统计

如何统计当前系统每天登录的用户数量?

使用Redis的Bitmaps,将 系统名+日期设置为key 如 zcy20211215,value中使用用户的Id做offset,用 0 和 1 记录用户在当天是否登录过,登录将对应的位设置为1。

这样做之后,每天可以得到一个Bitmaps,如果想获取某天登录过的用户数量,直接使用 BITCOUNT 操作即可。

如果想统计过去 30 天都登录过的用户,可以使用 BITOP AND 操作,将那 30 天的Bitmaps进行 按位与 操作。

布隆过滤器

布隆过滤器的本质是 Hash映射算法 + Bitmaps。

2.png

如图,一个 value 进入布隆过滤器,经过多个Hash算法,获取其映射在Bitmap上的位置,当所有的位置都为1时,则认为这个 value 在过滤器中,否则就认为不存在。

营销数据统计

Bitmaps 在营销系统中可以用到的场景很多:

用户画像信息的使用,一个用户有很多中标签并且无限扩展,比如 性别,是否是程序员,单身,租房,是否养宠物,我们都可以考虑用Bitmap储存和使用。

用户的行为,是否点击了广告,是否浏览到底部,是否领取优惠券等行为分别用一个Bitmap存储,用法和上面的用户画像类似。

这里举一个小例子,看一下Bitmaps在营销系统中的使用:

假设我们有一个一亿用户的电商应用,产品提了这样一个需求:

所有的男性用户在进入应用首页时,弹出一个 防脱发保健品 的广告弹窗

需求很简单,一个接口搞定,用户进入时调用 获取广告 的接口,接口中查询数据库判断是否为男性,是返回广告内容,否返回空。

这时候产品觉得这种推送不够精准,也未必男性都会掉头发,所以增加了条件: 程序员,我们的需求就变成了:

所有的 男性 且职业为 程序员 的用户在进入应用首页时,弹出一个 防脱发保健品 的广告弹窗

加了一个条件之后依然很简单,用户的 性别 和 职业 信息极有可能存在一张表,也是一次查询即可。

然而,男性程序员脱发的概率很高,但是未必都买得起防脱发保健品,这时候需要推送的更精准一点,所以再新增一个条件:在平台上月均消费超过五百 ,这个条件和上述的 男性程序员 这两个条件大概率不在同一个表中,如果用上面的方案,那就是再增加一次DB查询,速度慢且对数据库开销大,这个时候 Bitmaps 的效果就很明显了。

现有的条件是:男性程序员在平台上月均消费超过五百

在这个场景中,如果要使用 Bitmaps,首先要把数据加载到Redis里,可以用一种简单粗暴的方法,直接遍历数据库,把需要用的标签信息加载到Redis中:

    // 用户标签加载伪代码
    public Boolean loadUserLabel() {
    		// 用户性别 bitmap 数据加载
        String key = "user_label_sex_male";
        List<User> users = userDao.queryUser();
        users.forEach(
                t->{
                    if (Objects.equals(t.getSex(),"male")) {
                        jedis.setbit(key,t.getId(),"1");
                    }
                }
        );
        return true;
    }
登录后复制

经过上述代码,将用户的性别加载到了 redis 的 bitmap中,其他的标签如 职业、消费大于五百,与此类似。

在Redis中有了我们所需的用户标签信息后,就可以开始使用了,像我们上述的需求,可以用 BITOP 命令的 AND操作,将男性、程序员、月均消费大于五百这三个Bitmap 生成一个 同时满足这三个条件的 Bitmap,标签过多的时候可以这样做。在这里我们就三个条件,可以简单一点直接在代码里查三次:

    // 用户首页广告获取伪代码
    public Response getHomepageAds(User user) {
        // 这里写死,实际使用中是动态配置
        String maleKey = "user_label_sex_male";
        String programmerKey = "user_label_occupation_programmer";
        String spendMonth500Key = "user_label_spend_month_500";
        //去bitmap判断,该位为1,则满足条件
        if (jedis.getbit(maleKey,user.getId()) && jedis.getbit(programmerKey,user.getId()) 
                && jedis.getbit(spendMonth500Key,user.getId())) {
            return "内容";
        }
        return  "没有广告";
    }
登录后复制

上面就是一个Bitmap在营销系统中应用的小例子,可以在这基础上进行很多扩展,比如每个标签的实时的增量加载,每个广告和标签的绑定关系的动态配置,标签的自动生成等等等等。。。。

我们接下来可以看一下 Bitmaps 在用户行为记录中的应用,现在产品提了一个新的需求:

我想知道有多少用户点进了我们的弹窗广告

点击弹窗广告之后,前端发送请求,后端记录用户的点击状态:

    // 用户点击广告行为记录伪代码
    public Response getHomepageAds(User user) {
        String adActionKey = "homepage_ad_action_open";
        jedis.setbit(adActionKey,user.getId(),"1");
        
    }
登录后复制

后面如果想统计数量,可以直接用 BITCOUNT 命令。其他行为的记录和这个相似,如是否拖动到底部,停留时间是否大于n秒等等,这里就不做赘述啦。

协同制图

这个例子来源于Redis官网,是 Reddit 在 2017 年愚人节的一个游戏 r/place,这是一个非常有趣的 Bitmaps 的应用。

游戏介绍:

一个画板,上面有1000 * 1000 个像素点,每个玩家每五分钟可以编辑一个像素点(有十六种颜色提供选择),参与的玩家数量不限,72 小时后截止。

游戏很简单,每个人只要编辑像素点的颜色即可,17 年的活动最终形成了这个画(这里是一部分):

3.png

这里面有一百万个像素点,据统计至少十万人参与了这个游戏,并发量很高,如何保证可用性呢?Reddit 在这里就使用了 Redis 的 Bitmap:

先定义画板中的像素的位置,用 x 表示横坐标,y 表示纵坐标,每一个像素点的位置都对应 Bitmap 的一个offset。

	用户编辑像素点时,将 位置信息(x,y) 和 颜色信息 用 Bitmap 储存,读取画板数据也是直接利用 Bitmap。
登录后复制

思路很简单,主要是解决下面两个问题:

1、坐标和Bitmap之间的映射关系? 坐标如何转换成 Bitmap的 offset,offset如何转换成画板中的 x,y 坐标。

2、如何直接利用 Bitmaps 储存一个坐标点的信息? 这里就存颜色。

这个项目是这么做的:

1、由于总计像素点是 100 万个,所以设计了公式:  x + 1000y = offset

        储存时,将 (x,y) 转换成 offset ,比如 (1,2) 位置,那么 offset = 1 + 2000 = 2001

        读取时,将 offset 转换成(x,y),比如 offset = 9008,那么 x = 9008 % 1000 = 8,y = 9008 / 1000 = 9

2、利用 Bitmaps 的 BITFIELD 命令,进行分段操作:

玩家可选择的颜色共 16 种,那么每个点至少需要 4 位,所以使用 BITFIELD 时,操作的位数字段应该是 u4

看起来就是这样的:

4.png

上面是这个游戏对于 Bitmaps 应用的简单介绍,具体实现及源码见文末Reddit 团队的博客。

利用 BITFIELD 命令,还可以判断数据是否重复,比如有 10 亿个整数,如何找出其中重复的数据? 每个数可以给 2 位,01表示出现一次,10表示有重复。

四、小扩展

当用户 Id 不是自增 Id,该如何使用 Bitmaps?

        在实际开发中,用户的Id有可能不是自增的,比如使用雪花算法,或UUID工具生成的Id,这种情况直接使用 Bitmaps 是不行的,偏移量过大。这时候可以参考 布隆过滤器 ,设计一个Id的映射算法,将用户Id映射在一定范围内。

Bitmaps 进行持久化存储时,如何节省空间?

        使用压缩算法,如 RLE算法

在使用Bitmaps时,会有大量连续的位置数据重复,这些重复就有压缩的空间,比如前 1000 位都是 0,那只用存一句 1000个0即可,而不是 00000...这样存一千个。

更多编程相关知识,请访问:编程入门!!

以上是Redis学习之深入了解Bitmaps的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

redis集群模式怎么搭建 redis集群模式怎么搭建 Apr 10, 2025 pm 10:15 PM

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

redis数据怎么清空 redis数据怎么清空 Apr 10, 2025 pm 10:06 PM

如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。

redis指令怎么用 redis指令怎么用 Apr 10, 2025 pm 08:45 PM

使用 Redis 指令需要以下步骤:打开 Redis 客户端。输入指令(动词 键 值)。提供所需参数(因指令而异)。按 Enter 执行指令。Redis 返回响应,指示操作结果(通常为 OK 或 -ERR)。

redis怎么使用锁 redis怎么使用锁 Apr 10, 2025 pm 08:39 PM

使用Redis进行锁操作需要通过SETNX命令获取锁,然后使用EXPIRE命令设置过期时间。具体步骤为:(1) 使用SETNX命令尝试设置一个键值对;(2) 使用EXPIRE命令为锁设置过期时间;(3) 当不再需要锁时,使用DEL命令删除该锁。

redis怎么读取队列 redis怎么读取队列 Apr 10, 2025 pm 10:12 PM

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

redis底层怎么实现 redis底层怎么实现 Apr 10, 2025 pm 07:21 PM

Redis 使用哈希表存储数据,支持字符串、列表、哈希表、集合和有序集合等数据结构。Redis 通过快照 (RDB) 和追加只写 (AOF) 机制持久化数据。Redis 使用主从复制来提高数据可用性。Redis 使用单线程事件循环处理连接和命令,保证数据原子性和一致性。Redis 为键设置过期时间,并使用 lazy 删除机制删除过期键。

redis怎么读源码 redis怎么读源码 Apr 10, 2025 pm 08:27 PM

理解 Redis 源码的最佳方法是逐步进行:熟悉 Redis 基础知识。选择一个特定的模块或功能作为起点。从模块或功能的入口点开始,逐行查看代码。通过函数调用链查看代码。熟悉 Redis 使用的底层数据结构。识别 Redis 使用的算法。

redis怎么做消息中间件 redis怎么做消息中间件 Apr 10, 2025 pm 07:51 PM

Redis 作为消息中间件,支持生产-消费模型,可持久化消息并保证可靠交付。使用 Redis 作为消息中间件可实现低延迟、可靠和可扩展的消息传递。

See all articles