目录
单键索引
联合索引
数组索引
地理空间索引
TTL索引
条件索引
稀疏索引
文本索引
唯一索引
首页 数据库 MongoDB 带你聊聊MongoDB中丰富的索引类型

带你聊聊MongoDB中丰富的索引类型

Feb 17, 2022 am 10:58 AM
mongodb 索引类型

本篇文章带你了解MongoDB,介绍一下MongoDB中丰富的索引类型,希望对大家有所帮助!

带你聊聊MongoDB中丰富的索引类型

MongoDB的索引和MySql的索引的作用和优化要遵循的原则基本相似,MySql索引类型基本可以区分为:

  • 单键索引 - 联合索引
  • 主键索引(聚簇索引) - 非主键索引(非聚簇索引)

MongoDB中除了这些基础的分类之外,还有一些特殊的索引类型,如: 数组索引 | 稀疏索引 | 地理空间索引 | TTL索引等.

为了下面方便测试我们使用脚本插入以下数据

for(var i = 0;i < 100000;i++){
    db.users.insertOne({
        username: "user"+i,
        age: Math.random() * 100,
        sex: i % 2,
        phone: 18468150001+i
    });
}
登录后复制

单键索引

单键索引即索引的字段只有一个,是最基础的索引方式.

在集合中使用username字段,创建一个单键索引,MongoDB会自动将这个索引命名为username_1

db.users.createIndex({username:1})
&#39;username_1&#39;
登录后复制

在创建索引后查看一下使用username字段的查询计划,stageIXSCAN代表使用使用了索引扫描

db.users.find({username:"user40001"}).explain()
{ 
   queryPlanner: 
   { 
     winningPlan: 
     { 
        ......
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
        } 
     }
     rejectedPlans: [] ,
   },
   ......
   ok: 1 
}
登录后复制

在索引优化的原则当中,有很重要的原则就是索引要建立在基数高的的字段上,所谓基数就是一个字段上不重复数值的个数,即我们在创建users集合时年龄出现的数值是0-99那么age这个字段将会有100个不重复的数值,即age字段的基数为100,而sex这个字段只会出现0 | 1这个两个值,即sex字段的基础是2,这是一个相当低的基数,在这种情况下,索引的效率并不高并且会导致索引失效.

下面就船舰一个sex字段索引,来查询执行计划会发现,查询时是走的全表扫描,而没有走相关索引.

db.users.createIndex({sex:1})
&#39;sex_1&#39;

db.users.find({sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;COLLSCAN&#39;,
        filter: { sex: { &#39;$eq&#39;: 1 } },
        direction: &#39;forward&#39; 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登录后复制

联合索引

联合索引即索引上会有多个字段,下面使用agesex两个字段创建一个索引

db.users.createIndex({age:1,sex:1})
&#39;age_1_sex_1&#39;
登录后复制

然后我们使用这两个字段进行一次查询,查看执行计划,顺利地走了这条索引

db.users.find({age:23,sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { age: 1, sex: 1 },
           indexName: &#39;age_1_sex_1&#39;,
           .......
           indexBounds: { age: [ &#39;[23, 23]&#39; ], sex: [ &#39;[1, 1]&#39; ] } 
        } 
     },
     rejectedPlans: [], 
  },
  ......
  ok: 1 
 }
登录后复制

数组索引

数组索引就是对数组字段创建索引,也叫做多值索引,下面为了测试将users集合中的数据增加一部分数组字段.

db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","篮球","rap"]}})
......
登录后复制

创建数组索引并进行查看其执行计划,注意isMultiKey: true表示使用的索引是多值索引.

db.users.createIndex({hobby:1})
&#39;hobby_1&#39;

db.users.find({hobby:{$elemMatch:{$eq:"钓鱼"}}}).explain()
{ 
   queryPlanner: 
   { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { hobby: { &#39;$elemMatch&#39;: { &#39;$eq&#39;: &#39;钓鱼&#39; } } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { hobby: 1 },
           indexName: &#39;hobby_1&#39;,
           isMultiKey: true,
           multiKeyPaths: { hobby: [ &#39;hobby&#39; ] },
           ......
           indexBounds: { hobby: [ &#39;["钓鱼", "钓鱼"]&#39; ] } } 
         },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登录后复制

数组索引相比于其它索引来说索引条目和体积必然呈倍数增加,例如平均每个文档的hobby数组的size为10,那么这个集合的hobby数组索引的条目数量将是普通索引的10倍.

联合数组索引

联合数组索引就是含有数组字段的联合索引,这种索引不支持一个索引中含有多个数组字段,即一个索引中最多能有一个数组字段,这是为了避免索引条目爆炸式增长,假设一个索引中有两个数组字段,那么这个索引条目的数量将是普通索引的n*m倍

地理空间索引

在原先的users集合上,增加一些地理信息

for(var i = 0;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            location:{
                type: "Point",
                coordinates: [100+Math.random() * 4,40+Math.random() * 3]
            }
        }
    });
}
登录后复制

创建一个二维空间索引

db.users.createIndex({location:"2dsphere"})
&#39;location_2dsphere&#39;

//查询500米内的人
db.users.find({
  location:{
    $near:{
      $geometry:{type:"Point",coordinates:[102,41.5]},
      $maxDistance:500
    }
  }
})
登录后复制

地理空间索引的type有很多包含Ponit(点) | LineString(线) | Polygon(多边形)

TTL索引

TTL的全拼是time to live,主要是用于过期数据自动删除,使用这种索引需要在文档中声明一个时间类型的字段,然后为这个字段创建TTL索引的时候还需要设置一个expireAfterSeconds过期时间单位为秒,创建完成后MongoDB会定期对集合中的数据进行检查,当出现:

当前时间TTL索引字段时间>expireAfterSrconds当前时间 - TTL索引字段时间 > expireAfterSrconds

MongoDB将会自动将这些文档删除,这种索引还有以下这些要求:

  • TTL索引只能有一个字段,没有联合TTL索引
  • TTL不能用于固定集合
  • TTL索引是逐个遍历后,发现满足删除条件会使用delete函数删除,效率并不高

首先在我们文档上增减一个时间字段

for(var i = 90000;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            createdDate:new Date()
        }
    });
}
登录后复制

创建一个TTL索引并且设定过期时间为60s,待过60s后查询,会发现这些数据已经不存在

db.users.createIndex({createdDate:1},{expireAfterSeconds:60})
&#39;createdDate_1&#39;
登录后复制

另外还可以用CollMod命令更改TTL索引的过期时间

db.runCommand({
  collMod:"users",
  index:{
    keyPattern:{createdDate:1},
    expireAfterSeconds:120
  }
})

{ expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }
登录后复制

条件索引

条件索引也叫部分索引(partial),只对满足条件的数据进行建立索引.

只对50岁以上的user进行建立username_1索引,查看执行计划会发现isPartial这个字段会变成true

db.users.createIndex({username:1},{partialFilterExpression:{
    age:{$gt:50}
  }})
&#39;username_1&#39;

db.users.find({$and:[{username:"user4"},{age:60}]}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { age: { &#39;$eq&#39;: 60 } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
           isPartial: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登录后复制

稀疏索引

一般的索引会根据某个字段为整个集合创建一个索引,即使某个文档不存这个字段,那么这个索引会把这个文档的这个字段当作null建立在索引当中.

稀疏索引不会对文档中不存在的字段建立索引,如果这个字段存在但是为null时,则会创建索引.

下面给users集合中的部分数据创建稀疏索引

for(var i = 5000;i < 10000;i++){
  if(i < 9000){
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:(120000000+i)+"@qq.email"}}
    )
  }else{
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:null}}
    )
  }
}
登录后复制

当不建立索引使用{email:null}条件进行查询时,我们会发现查出来的文档包含没有email字段的文档

db.users.find({email:null})
{ 
  _id: ObjectId("61bdc01ba59136670f6536fd"),
  username: &#39;user0&#39;,
  age: 64.41483801726282,
  sex: 0,
  phone: 18468150001,
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.42490900320335, 42.2576650823515 ] 
  } 
}
......
登录后复制

然后对email这个字段创建一个稀疏索引使用{email:null}条件进行查询,则发现查询来的文档全部是email字段存在且为null的文档.

db.users.createIndex({email:1},{sparse:true});
&#39;email_1&#39;

db.users.find({email:null}).hint({email:1})
{ 
  _id: ObjectId("61bdc12ca59136670f655a25"),
  username: &#39;user9000&#39;,
  age: 94.18397576757012,
  sex: 0,
  phone: 18468159001,
  hobby: [ &#39;钓鱼&#39;, &#39;乒乓球&#39; ],
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.25903151863596, 41.38450145025062 ] 
  },
  email: null 
}
......
登录后复制

文本索引

文本索引将建立索引的文档字段先进行分词再进行检索,但是目前还不支持中文分词.

下面增加两个文本字段,创建一个联合文本索引

db.blog.insertMany([
  {title:"hello world",content:"mongodb is the best database"},
  {title:"index",content:"efficient data structure"}
])

//创建索引
db.blog.createIndex({title:"text",content:"text"})
&#39;title_text_content_text&#39;
//使用文本索引查询
db.blog.find({$text:{$search:"hello data"}})
{ 
  _id: ObjectId("61c092268c4037d17827d977"),
  title: &#39;index&#39;,
  content: &#39;efficient data structure&#39; 
},
{ 
  _id: ObjectId("61c092268c4037d17827d976"),
  title: &#39;hello world&#39;,
  content: &#39;mongodb is the best database&#39; 
}
登录后复制

唯一索引

唯一索引就是在建立索引地字段上不能出现重复元素,除了单字段唯一索引还有联合唯一索引以及数组唯一索引(即数组之间不能有元素交集 )

//对title字段创建唯一索引
db.blog.createIndex({title:1},{unique:true})
&#39;title_1&#39;
//插入一个已经存在的title值
db.blog.insertOne({title:"hello world",content:"mongodb is the best database"})
MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" }
//查看一下执行计划,isUnique为true
db.blog.find({"title":"index"}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { title: 1 },
           indexName: &#39;title_1&#39;,
           isMultiKey: false,
           multiKeyPaths: { title: [] },
           isUnique: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  .......
  ok: 1 
}
登录后复制

相关视频教程推荐:《MongoDB教程

以上是带你聊聊MongoDB中丰富的索引类型的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

navicat过期怎么办 navicat过期怎么办 Apr 23, 2024 pm 12:12 PM

解决 Navicat 过期问题的方法包括:续订许可证;卸载并重新安装;禁用自动更新;使用 Navicat Premium Essentials 免费版;联系 Navicat 客户支持。

前端学nodejs难吗 前端学nodejs难吗 Apr 21, 2024 am 04:57 AM

对于前端开发人员而言,学习 Node.js 的难度取决于其 JavaScript 基础、服务器端编程经验、命令行熟悉度和学习风格。学习过程包括入门级和进阶级的模块,重点关注基础概念、服务器端架构、数据库集成和异步编程。总体而言,对于具备扎实 JavaScript 基础并愿意投入时间和精力的开发人员,学习 Node.js 并不困难,但对于缺乏相关经验的人来说,可能需要克服一定的挑战。

navicat怎么连mongodb navicat怎么连mongodb Apr 24, 2024 am 11:27 AM

要使用 Navicat 连接 MongoDB,您需要:安装 Navicat创建 MongoDB 连接:a. 输入连接名称、主机地址和端口b. 输入认证信息(如果需要)添加 SSL 证书(如果需要)验证连接保存连接

net4.0有什么用 net4.0有什么用 May 10, 2024 am 01:09 AM

.NET 4.0 用于创建各种应用程序,它为应用程序开发人员提供了丰富的功能,包括:面向对象编程、灵活性、强大的架构、云计算集成、性能优化、广泛的库、安全性、可扩展性、数据访问和移动开发支持。

nodejs用什么数据库好 nodejs用什么数据库好 Apr 21, 2024 am 05:06 AM

对于 Node.js 应用,选择数据库取决于应用要求。NoSQL 数据库 MongoDB 提供灵活性,Redis 提供高并发性,Cassandra 处理时间序列数据,Elasticsearch 专用于搜索。SQL 数据库 MySQL 性能出色,PostgreSQL 功能丰富,SQLite 轻量级,Oracle Database 全面。选择时,需考虑数据类型、查询、性能、事务性、可用性、许可和成本。

nodejs如何实现数据库 nodejs如何实现数据库 Apr 21, 2024 am 05:42 AM

在 Node.js 中连接数据库需要选择一个数据库系统(关系型或非关系型),然后使用特定于该类型的模块建立连接。常见模块包括 mysql(MySQL)、pg(PostgreSQL)、mongodb(MongoDB)和 redis(Redis)。建立连接后,可以使用查询语句检索数据并使用更新语句修改数据。最后,完成所有操作后必须关闭连接以释放资源。遵循这些最佳实践可提高性能和安全性,例如使用连接池、参数化查询和妥善处理错误。

nodejs怎么连接数据库 nodejs怎么连接数据库 Apr 21, 2024 am 05:07 AM

在 Node.js 中连接数据库的步骤:安装 MySQL、MongoDB 或 PostgreSQL 包。创建数据库连接对象。打开数据库连接,并处理连接错误。

说明不同类型的MySQL索引(B树,哈希,全文,空间)。 说明不同类型的MySQL索引(B树,哈希,全文,空间)。 Apr 02, 2025 pm 07:05 PM

MySQL支持四种索引类型:B-Tree、Hash、Full-text和Spatial。1.B-Tree索引适用于等值查找、范围查询和排序。2.Hash索引适用于等值查找,但不支持范围查询和排序。3.Full-text索引用于全文搜索,适合处理大量文本数据。4.Spatial索引用于地理空间数据查询,适用于GIS应用。

See all articles