首页 > 数据库 > mysql教程 > 带你把MySQL索引吃透了

带你把MySQL索引吃透了

WBOY
发布: 2022-04-22 21:15:26
转载
2488 人浏览过

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了mysql高级篇的一些问题,包括了索引是什么、索引底层实现等等问题,下面一起来看一下,希望对大家有帮助。

带你把MySQL索引吃透了

推荐学习:mysql视频教程

MySQL,一个熟悉又陌生的名词,早在学习Javaweb的时候,我们就用到了MySQL数据库,在那个阶段,MySQL对我们来说似乎只是一个存储数据的好东西,存储时一股脑往里边塞,查询时也是盲目的全表查询(不带一点点优化)。

我们总是自欺欺人的觉得,我们通过其他方面来优化就好了阿,迟迟不愿面对MySQL高级,转而学习一些看似更为"高级"的东西,学Redis,来分担MySQL的压力,学MyCat等中间件,实现主从复制读写分离分库分表等等。(说的就是melo没错了)

到了准备面试的时候,发现面试题里边的MySQL一问三不知~

而自己学到的前沿中间件,问得几乎很少!!自己也只是会用,写简历时只能弱弱写上"了解"xxx中间件……

当然了,学习MySQL高级篇,不单单只是为了面试,实际的项目中,这一块的优化是十分重要的,体验过服务器宕机后,只能默默........

从现在开始吧,此时上岸还来得及!!!趁着金三银四,补充补充MySQL高级篇的知识点,从如下几方面开启 MySQL高级篇之旅

建议通过侧边栏目录检索对您有帮助的部分,其中有emoji表情前缀属于重点部分,觉得对您有帮助的话,小编还会持续更进完善本篇文章和MySQL专栏。

索引定义

MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构(有序)。索引是在数据库表的字段上添加的,是为了提高查询效率存在的一种机制。除了数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。如下面的示意图所示 :

其实简单来说,索引就是一个排好序的数据结构

左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找快速获取到相应数据。

索引优势

  • 加快查找排序的速率,降低数据库的IO成本以及CPU的消耗
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

索引劣势

  1. 索引实际上也是一张表,保存了主键和索引字段,并指向实体类的记录,本身需要占用空间
  2. 虽然增加了查询效率,但对于增删改,每次改动表,还需要更新一下索引 新增:自然需要在索引树中新增节点 删除:索引树中指向的记录可能会失效,意味着这棵索引树很多节点,都是失效的 改动:索引树中节点的指向可能需要改变

但实际上呢,我们MySQL中并不是用二叉查找树来存储,为何呢?

要知道,二叉查找树,此处一个节点只能存储一条数据,而一个节点呢,在MySQL里边又对应一个磁盘块,这样我们每次读取一个磁盘块,只能获取一条数据,效率特别的低,所以我们会想到采用B树这种结构来存储。

索引结构

索引是在MySQL的存储引擎层中实现的,而不是在服务器层实现的。所以每种存储引擎的索引都不一定完全相同,而且也不是所有的引擎都支持所有的索引类型。

  • BTREE 索引 : 最常见的索引类型,大部分索引都支持 B 树索引。
  • HASH 索引:只有Memory引擎支持 , 使用场景简单 。
  • R-tree 索引(空间索引):空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少,不做特别介绍。
  • Full-text (全文索引) :全文索引也是MyISAM的一个特殊索引类型,主要用于全文索引,InnoDB从Mysql5.6版本开始支持全文索引。

MyISAM、InnoDB、Memory三种存储引擎对各种索引类型的支持

索引

INNODB引擎

MYISAM引擎

MEMORY引擎

BTREE索引

支持

支持

支持

HASH 索引

不支持

不支持

支持

R-tree 索引

不支持

支持

不支持

Full-text

5.6版本之后支持

支持

不支持

我们平常所说的索引,如果没有特别指明,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引、复合索引、前缀索引、唯一索引默认都是使用 B+tree 索引,统称为 索引。

BTREE

多路平衡搜索树,一棵m阶(m叉)BTREE满足:

  • 每个节点最多m个孩子 孩子个数:ceil(m/2) 到 m 关键字个数:ceil(m/2)-1 到 m-1

ceil表示向上取整,ceil(2.3)=3

插入关键字案例

保证不破坏m阶B树的性质

由于3阶,最多只能2个节点,所以一开始26和30在一起,之后再来个85就要开始分裂了,30作为中间上位,26保持,85去到右边
即:中间位置上位,然后左边留在旧节点,右边去到新结点

如图中的70再插入的时候,70刚好是中间位置上位,然后62保持,85又去分一个新节点出来

上位后又需要分裂

继续向上分裂即可,同理的

相比优势

相比二叉搜索树,高度/深度更低,自然查询效率更高。

B+TREE

  • B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。
  • 内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。
  • 每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序连接。
  • 父节点存有右孩子的第一个元素的索引

相比优势

  • B+Tree的查询效率更加稳定。由于B+Tree只有叶子节点保存key信息,查询任何key都要从root走到叶子,所以更稳定。
  • 只需遍历叶子节点,就可以实现整棵树的遍历。

MySQL中的B+Tree

MySql索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针(整体类似一个双向链表的结构),就形成了带有顺序指针的B+Tree,提高区间访问的性能。

细心的同学可以看出,这张图跟我们的二叉查找树简图的一个最大区别是什么?

  • 二叉查找树过渡到B树,有一个显著的变化就是,一个节点可以存储多个数据了,相当于一个磁盘块里边可以存储多个数据,大大减少了我们的 IO次数!!

MySQL中的 B+Tree 索引结构示意图:

二叉查找树简图:

索引原理

BTree索引:

初始化介绍

浅蓝色的称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示)
如磁盘块1包含数据项17和35,包含指针P1、P2、P3,
P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。

  • 真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。`
  • 非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。`

查找过程

如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO。在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中通过二分查找搜索到29,结束查询,总计三次IO。

真实的情况是,3层的B+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

索引分类

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。

每一个索引在InnoDB里面对应一棵B+树。
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。
这个表的建表语句是:

mysql> create table T( 
  id int primary key, 
  k int not null,  
  name varchar(16), 
  index (k))engine=InnoDB; 
复制代码
登录后复制

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下:


从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引

数据表的主键列使用的就是主键索引,且会默认创建,这也是为什么,我们还没学索引的时候,老师经常跟我们说根据主键查会快一点,原来主键本身就建好了索引。
主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

辅助索引

辅助索引的叶子节点内容是主键的值。在InnoDB里,辅助索引也被称为二级索引(secondary index)。

如下图:

  • 主键索引存放了整行数据
  • 辅助索引只存放了自己本身,以及id主键用于回表查询

根据上面的索引结构,我们来讨论一个问题:基于主键索引和辅助索引的查询有什么区别?

  • 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
  • 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表

也就是说,基于辅助索引的查询需要多扫描一棵索引树。因此,我们在应用中应当尽量使用主键查询。

除非说,我们所要查询的数据,刚好就是我们索引树上存在的,此时我们称之为覆盖索引--即索引列中包含了我们要查询的所有数据。

同时,二级索引又分为了如下几种(先简单略过即可,后续我们再慢慢了解):

  • 唯一索引(Unique Key) :唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
  • 普通索引(Index)普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
  • 前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
  • 全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引

扩展--索引下推

所谓下推,顾名思义,其实是推迟我们的回表操作,MySQL不会轻而易举让我们去回表,因为很浪费。什么意思呢?来看下边这个例子。

我们建立了一个复合索引(name,status,address),索引中也是按这个字段来存储的,类似图中这样:

复合索引树(只存储索引列和主键用于回表)

name

status

address

id(主键)

小米1

0

1

1

小米2

1

1

2

我们执行这样一条语句:

SELECT name FROM tb_seller WHERE name like '小米%' and status ='1' ;
复制代码
登录后复制
  1. 首先我们在复合索引树上,找到了第一个以小米开头的name -- 小米1
  2. 此时我们不着急回表(回到主键索引树搜索的过程,我们称为回表),而是先在复合索引树判断status是否=1,此时status=0,我们直接就不回表了,直接继续找下一个以小米开头的name
  1. 找到第二个-- 小米2,判断status=1,则根据id=2去主键索引树上找,得到所有的数据

这种先在自身索引树上判断是否满足其他的where条件,不满足则直接pass掉,不进行回表的操作,就叫做索引下推。

最左前缀原则

所谓最左前缀,可以想象成一个爬楼梯的过程,假设我们有一个复合索引:name,status,address,那这个楼梯由低到高依次顺序是:name,status,address,最左前缀,要求我们不能出现跳跃楼梯的情况,否则会导致我们的索引失效:

  1. 按楼梯从低到高,无出现跳跃的情况--此时符合最左前缀原则,索引不会失效

  2. 出现跳跃的情况
  • 直接第一层name都不走,当然都失效

  • 走了第一层,但是后续直接第三层,只有出现跳跃情况前的不会失效(此处就只有name成功)

  • 同时,这个顺序并不是由我们where中的排列顺序决定,比如: where name='小米科技' and status='1' and address='北京市' where status='1' and name='小米科技' and address='北京市'

这两个尽管where中字段的顺序不一样,第二个看起来越级了,但实际上效果是一样的

其实是因为我们MySQL有一个Optimizer(查询优化器),查询优化器会将SQL进行优化,选择最优的查询计划来执行。

  • 关于这个查询优化器,后续文章我们也会谈谈MySQL的逻辑架构与存储引擎

索引设计原则

针对表

  1. 查询频次高,且数据量多的表

针对字段

  1. 最好从where子句的条件中提取,如果where子句中的组合比较多,那么应当挑选最常用、过滤效果最好的列的组合。

其他原则

  1. 最好用唯一索引,区分度越高,使用索引的效率越高
  2. 不是越多越好,维护也需要时间和空间代价,建议单张表索引不超过 5 个

因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。

比如:

我们创建了三个单列索引,name,status,address

当我们where中根据status和address两个字段来查询时,数据库只会选择最优的一个索引,不会所有单列索引都使用。

最优的索引:具体是指所查询表中,辨识度最高(所占比例最少)的索引列,比如此处address中有一个辨识度很高的 '西安市'数据

  1. 使用短索引,索引创建之后也是使用硬盘来存储的,因此提升索引访问的I/O效率,也可以提升总体的访问效率。假如构成索引的字段总长度比较短,那么在给定大小的存储块内可以存储更多的索引值,相应的可以有效的提升MySQL访问索引的I/O效率。
  2. 利用最左前缀,比如有N个字段,我们不一定需要创建N个索引,可以用复合索引

也就是说,我们尽量创建复合索引,而不是单列索引

创建复合索引:
	CREATE INDEX idx_name_email_status ON tb_seller(name,email,status);

就相当于
	对name 创建索引 ;
	对name , email 创建了索引 ;
	对name , email, status 创建了索引 ;
复制代码
登录后复制

举个栗子

假设我们有这么一个表,id为主键,没有创建索引:

CREATE TABLE `tuser` (
  `id` int(11) NOT NULL,
  `name` varchar(32) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
) ENGINE=InnoDB
复制代码
登录后复制

如果要在此处建立复合索引,我们要遵循什么原则呢?

通过调整顺序,可以少维护一个索引

  • 比如我们的业务需求里边,有如下两种查询方式: 根据name查询 根据name和age查询

如果我们建立索引(age,name),由于最左前缀原则,我们这个索引能实现的是根据age,根据age和name查询,并不能单纯根据name查询(因为跳跃了),为了实现我们的需求,我们还得再建立一个name索引;

而如果我们通过调整顺序,改成(name,age),就能实现我们的需求了,无需再维护一个name索引,这就是通过调整顺序,可以少维护一个索引。

考虑空间->短索引

  • 比如我们的业务需求里边,有以下两种查询方式: 根据name查询 根据age查询 根据name和age查询

我们有两种方案:

  1. 建立联合索引(name,age),建立单列索引:age索引。
  2. 建立联合索引(age,name),建立单列索引:name索引。

这两种方案都能实现我们的需求,这个时候我们就要考虑空间了,name字段是比age字段大的,显然方案1所耗费的空间是更小的,所以我们更倾向于方案1

何时建立索引

  1. where中的查询字段
  2. 查询中与其他表关联的字段,比如外键
  3. 排序的字段
  4. 统计或分组的字段

何时达咩索引

  1. 表中数据量很少
  2. 经常改动的表
  3. 频繁更新的字段
  4. 数据重复且分布均匀的表字段(比如包含了很多重复数据,那此时多叉树的二分查找,其实用处不大,可以理解为O(logn)退化了)

索引相关语法

创建索引

默认会为主键创建索引--primary

CREATE 	[UNIQUE|FULLTEXT|SPATIAL]  INDEX index_name 
[USING  index_type]
ON tbl_name(index_col_name,...)

index_col_name : column_name[(length)][ASC | DESC]
复制代码
登录后复制

查找索引

结尾加上\G,可以变成竖屏显示

select index from tbl_name\G;
复制代码
登录后复制

删除索引

drop INDEX index_name on tbl_name ;
复制代码
登录后复制

变更索引

1). alter  table  tb_name  add  primary  key(column_list); 
	该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL	
	
2). alter  table  tb_name  add  unique index_name(column_list);
	这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)
	
3). alter  table  tb_name  add  index index_name(column_list);
	添加普通索引, 索引值可以出现多次。
	
4). alter  table  tb_name  add  fulltext  index_name(column_list);
	该语句指定了索引为FULLTEXT, 用于全文索引
复制代码
登录后复制

查看索引使用情况

show status like 'Handler_read%';	 -- 查看当前会话索引使用情况

show global status like 'Handler_read%';	-- 查看全局索引使用情况
复制代码
登录后复制

Handler_read_first:索引中第一条被读的次数。如果较高,表示服务器正执行大量全索引扫描(这个值越低越好)。

Handler_read_key:如果索引正在工作,这个值代表一个行被索引值读的次数,如果值越低,表示索引得到的性能改善不高,因为索引不经常使用(这个值越高越好)。

Handler_read_next :按照键顺序读下一行的请求数。如果你用范围约束或如果执行索引扫描来查询索引列,该值增加。

Handler_read_prev:按照键顺序读前一行的请求数。该读方法主要用于优化ORDER BY ... DESC。

Handler_read_rnd :根据固定位置读一行的请求数。如果你正执行大量查询并需要对结果进行排序该值较高。你可能使用了大量需要MySQL扫描整个表的查询或你的连接没有正确使用键。这个值较高,意味着运行效率低,应该建立索引来补救。

Handler_read_rnd_next:在数据文件中读下一行的请求数。如果你正进行大量的表扫描,该值较高。通常说明你的表索引不正确或写入的查询没有利用索引。

总结

  1. 索引简单来说就是一个排好序的数据结构,可以方便我们检索数据,而不需要盲目的进行全表扫描。
  2. 索引底层有很多种实现结构,这篇主要只是讲解了BTREE索引,如果对树这一数据结构还不太熟悉的小伙伴,可以关注我后续数据结构专栏,会整理关于普通树,二叉树,二叉排序树的文章。
  3. 索引分类:
    1. 主键索引
    2. 辅助索引

这里我们还扩展了索引下推,是一个十分重要的知识点,需要仔细回味。

  1. 索引的相关设计原则,索引虽好,但也不可贪杯,不能为了用索引而建索引。
  2. 索引的相关语法,很容易上手的。
  3. 查看索引的使用情况。

推荐学习:mysql视频教程

以上是带你把MySQL索引吃透了的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:csdn.net
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板