目录
1.内核中添加
2.u-boot传参
3.dts传参
首页 运维 linux运维 linux mtd是什么

linux mtd是什么

May 11, 2022 pm 05:22 PM
linux

在linux中,mtd是指“内存技术设备”,是存储设备中的一个子系统。linux引入MTD系统是为了给NOR FLASH和NAND FLASH设备提供统一接口。MTD设备通常可分为四层:设备节点、MTD设备层、MTD原始设备层、硬件驱动层。

linux mtd是什么

本教程操作环境:linux5.9.8系统、Dell G3电脑。

Linux MTD是什么?

MTD全称“Memory Technology Device”,意思为“内存技术设备”,是Linux的存储设备中的一个子系统。

在Linux内核中,引入MTD层为NOR FLASH和NAND FLASH设备提供统一接口。MTD将文件系统与底层FLASH存储器进行了隔离。

设计此MTD系统的目的是,对于内存类的设备,提供一个抽象层,一个接口,使得对于硬件驱动设计者来说,只需要去提供最简单的底层硬件设备的读/写/擦除函数就可以了,数据对于上层使用者来说是如何表示的,可以不关心,因为MTD存储设备子系统都帮你做好了。

MTD框架

Linux的MTD设备位于drivers/mtd/下面。

MTD文件下的内容如下:

1.png

MTD设备通常可分为四层

上到下依次是:设备节点、MTD设备层、MTD原始设备层和硬件驱动层。

2.png

1.cmdlinepart.c

当mtd分区表由u-boot通过cmd参数传输给linux时,linux内核可以不用对mtdparts进行注册添加,只需要将MTD中的command line partition选项开启即可。使用这种的方法u-boot下需要对MTD进行支持,且所传输的mtd分区参数要符合格式要求。

2.devices文件夹

当我们有一个spi flash设备时且要使用mtd进行管理,我们一般会将其放在devices文件夹下,如devices文件夹下面的m25p80.c就是一个典型的spi flash设备。

3.chips/nand/onenand文件夹

nand flash 驱动在nand文件夹下;

onenand flash 驱动在onenand文件夹下;

nor flash比较杂,下面几个文件下都会有:

chips:cfi/jedec接口通用驱动

devices:nor flash底层驱动(spi flash)

maps:nor flash映射关系相关函数

4.核心文件

mtdchar.c : MTD字符设备接口相关实现,设备号31;

mtdblock.c : MTD块设备接口相关实现,设备号90,;

mtdcore.c: MTD原始设备接口相关实现;

mtdpart.c : MTD分区接口相关实现。

5.ubi

ubifs文件的支持层,当使用ubifs文件系统时,需要将Device Drivers -> Memory Technology Device (MTD) support -> UBI -Unsorted block image 中的Enable UBI选中。

将File systems -> Miscellaneous filesystems中的UBIFS file system support选中。

MTD分区表的实现

在开机过程从console经常可以看到类似以下信息,

0x000000000000-0x000000100000 : "Bootloade"
0x000000100000-0x000002000000 : "Kernel"
0x000002000000-0x000003000000 : "User"
0x000003000000-0x000008000000 : "File System"
登录后复制

这就是MTD给我们一种最直观的表示形式,给我们展示了内存中各模块的分区结构,但这些分区是怎样实现的呢?分区表的实现方式有几种,下面进行分别说明:

注:分区表实现的前提是MTD设备驱动已经成功了,否则连驱动都没成功就无分区可说了。

1.内核中添加

在内核中添加这是一个比较经常使用的方法,随便一本驱动移植的书上应该都有,主要就是在平台设备里面添加mtd_partition,添加类似下面的信息,这边就不过多描述

struct mtd_partition s3c_nand_part[] = {
    {
        .name       = "Bootloader",
        .offset     = 0,
        .size       = (1 * SZ_1M),
        .mask_flags = MTD_CAP_NANDFLASH,
    },
    {
        .name       = "Kernel",
        .offset     = (1 * SZ_1M),
        .size       = (31 * SZ_1M) ,
        .mask_flags = MTD_CAP_NANDFLASH,
    },
    {
        .name       = "User",
        .offset     = (32 * SZ_1M),
        .size       = (16 * SZ_1M) ,
    },
    {
        .name       = "File System",
        .offset     = (48 * SZ_1M),
        .size       = (96 * SZ_1M),
    }
};

static struct s3c_nand_set s3c_nand_sets[] = {
    [0] = {
        .name       = "nand",
        .nr_chips   = 1,
        .nr_partitions  = ARRAY_SIZE(s3c_nand_part),
        .partitions = ok6410_nand_part,
    },
};

static struct s3c_platform_nand s3c_nand_info = {
    .tacls      = 25,
    .twrph0     = 55,
    .twrph1     = 40,
    .nr_sets    = ARRAY_SIZE(s3c_nand_sets),
    .sets       = ok6410_nand_sets,
};

static void __init s3c_machine_init(void)
{
    s3c_nand_set_platdata(&s3c_nand_info); 
}
登录后复制

因为我们的MTD驱动已经完成了,当device和driver匹配后会调用驱动中的probe接口函数,我们需要在probe函数里面调用add_mtd_partitions(s3c_mtd, sets->partitions, sets->nr_partitions);实现分区表的添加。

2.u-boot传参

在u-boot下可以通过添加mtdparts信息到bootargs中,u-boot启动后会将bootargs中的信息传送给kernel,,kernel在启动的时候会解析bootargs中mtdparts的部分,这边举个例子:

mtdparts=nand.0:1M(Bootloader)ro,31M(Kernel)ro,16M(User),96M(File System),更具体的mtdparts格式可以查阅下相关资料。

为了使kernel能够解析mtdparts信息,我们需要将内核中的Device Drivers -> Memory Technology Device (MTD) support ->Command line partition table parsing选项开启,这在上面已经说过。

在内核中添加分区表的时候,我们是在平台设备里面加入mtd_partition信息。这边通过u-boot传参则取消平台设备里面的partition信息,那我们需要怎样解析u-boot的传过来的mtdparts呢。

u-boot传参过来后,cmdlinepart.c中会将这些参数解析好,存在里面LIST_HEAD(part_parsers)链表里面,然后我们在驱动的probe函数中,通过调用mtd_device_parse_register(mtd, probe_types,&ppdata, NULL, 0);函数。

mtd_device_parse_register()函数位于drivers/mtd/mtdcore.c 中,内容如下:

int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
                  struct mtd_part_parser_data *parser_data,
                  const struct mtd_partition *parts,
                  int nr_parts)
{
    int err;
    struct mtd_partition *real_parts;

    err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
    if (err <= 0 && nr_parts && parts) {
        real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
                     GFP_KERNEL);
        if (!real_parts)
            err = -ENOMEM;
        else
            err = nr_parts;
    }

    if (err > 0) {
        err = add_mtd_partitions(mtd, real_parts, err);
        kfree(real_parts);
    } else if (err == 0) {
        err = add_mtd_device(mtd);
        if (err == 1)
            err = -ENODEV;
    }

    return err;
}
登录后复制

可以看到该函数会先执行parse_mtd_partitions(mtd, types, &real_parts, parser_data);函数,后面还是通过add_mtd_partitions()函数来实现分区表的添加。

parse_mtd_partitions()函数位于drivers/mtd/mtdpart.c中,内容如下:

int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
             struct mtd_partition **pparts,
             struct mtd_part_parser_data *data)
{
    struct mtd_part_parser *parser;
    int ret = 0;

    if (!types)
        types = default_mtd_part_types;

    for ( ; ret <= 0 && *types; types++) {
        parser = get_partition_parser(*types);
        if (!parser && !request_module("%s", *types))
            parser = get_partition_parser(*types);
        if (!parser)
            continue;
        ret = (*parser->parse_fn)(master, pparts, data);
        put_partition_parser(parser);
        if (ret > 0) {
            printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
                   ret, parser->name, master->name);
            break;
        }
    }
    return ret;
}
登录后复制

进入parse_mtd_partitions()函数会先判断types的类型,如果为空则给默认值,types的类型一般就两种,如下:

static const char * const default_mtd_part_types[] = {
    "cmdlinepart",
    "ofpart",
    NULL
};
登录后复制

第一个"cmdlinepart"即u-boot传参的方式,第二个"ofpart"即下面要讲到的使用dts传参的方式,判断完类型后,就通过get_partition_parser去解析part_parsers链表里面的数据,这样就完成u-boot参数的解析。

3.dts传参

在Linux3.14以后的linux版本中,加入一个新的知识DTS(Device tree),dts其实就是为了解决ARM Linux中的冗余代码,在Linux2.6版本的arch/arm/plat.xxx和arch/arm/mach.xxx中充斥着大量的垃圾代码,采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码,关于dts可以自行查阅资料。

dts传参的原理其实和u-boot一样,区别在于:u-boot的时候是通过cmdlinepart.c文件实现分区信息写入LIST_HEAD(part_parsers)链表,dts则是用过ofpart.c文件实现分区信息写入LIST_HEAD(part_parsers)链表,所以同样要把ofpart.c文件的宏打开,在调用mtd_device_parse_register(mtd, probe_types,&ppdata, NULL, 0);函数的时候types要设置成ofpart。

如果去对比Linux2.6版本和Linux3.14版本,会发现drivers/mtd/ofpart.c和drivers/mtd/mtdpart.c文件有所不同,Linux3.8版本里面多了Device tree这一部分的内容,感兴趣的可以自己深究下。

这边举个dts的例子:

 pinctrl-0 = <&s3c_nand_flash>;
    ranges = <0 0 0x000000000000 0x000008000000>;   /* CS0: NAND */
    nand@0,0 {
        partition@1 {
            label = "Bootloader";
            reg = <0x000000000000 0x000000100000>;
        };
        partition@2 {
            label = "Kernel";
            reg = <0x000000100000 0x000002000000>;
        };
        partition@3 {
            label = "User";
            reg = <0x000002000000 0x000003000000>;
        };
        partition@4 {
            label = "File System";
            reg = <0x000003000000 0x000008000000>;
        };
    };
登录后复制

Linux mtd system的分析就到这边,有感悟时会持续会更新。

相关推荐:《Linux视频教程

以上是linux mtd是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

deepseek网页版入口 deepseek官网入口 deepseek网页版入口 deepseek官网入口 Feb 19, 2025 pm 04:54 PM

DeepSeek 是一款强大的智能搜索与分析工具,提供网页版和官网两种访问方式。网页版便捷高效,免安装即可使用;官网则提供全面产品信息、下载资源和支持服务。无论个人还是企业用户,都可以通过 DeepSeek 轻松获取和分析海量数据,提升工作效率、辅助决策和促进创新。

deepseek怎么安装 deepseek怎么安装 Feb 19, 2025 pm 05:48 PM

DeepSeek的安装方法有多种,包括:从源码编译(适用于经验丰富的开发者)使用预编译包(适用于Windows用户)使用Docker容器(最便捷,无需担心兼容性)无论选择哪种方法,请仔细阅读官方文档并充分准备,避免不必要的麻烦。

BITGet官方网站安装(2025新手指南) BITGet官方网站安装(2025新手指南) Feb 21, 2025 pm 08:42 PM

BITGet 是一款加密货币交易所,提供各种交易服务,包括现货交易、合约交易和衍生品。该交易所成立于 2018 年,总部位于新加坡,致力于为用户提供安全可靠的交易平台。BITGet 提供多种交易对,包括 BTC/USDT、ETH/USDT 和 XRP/USDT。此外,该交易所还在安全性和流动性方面享有盛誉,并提供多种功能,如高级订单类型、杠杆交易和 24/7 全天候客户支持。

欧易okx安装包直接进 欧易okx安装包直接进 Feb 21, 2025 pm 08:00 PM

欧易 OKX,全球领先的数字资产交易所,现推出官方安装包,提供安全便捷的交易体验。欧易 OKX 安装包无需通过浏览器访问,可直接在设备上安装独立应用程序,为用户打造稳定高效的交易平台。安装过程简便易懂,用户只需下载最新版本安装包,按照提示一步步操作即可完成安装。

gate.io安装包免费拿 gate.io安装包免费拿 Feb 21, 2025 pm 08:21 PM

Gate.io是一款受欢迎的加密货币交易所,用户可通过下载其安装包并安装在设备上使用。获取安装包步骤如下:访问Gate.io官方网站,点击“下载”,选择对应操作系统(Windows、Mac或Linux),将安装包下载至计算机。安装过程中建议暂时禁用杀毒软件或防火墙,确保安装顺利。完成后,用户需创建Gate.io账户以开始使用。

欧易交易所下载官方入口 欧易交易所下载官方入口 Feb 21, 2025 pm 07:51 PM

欧易,又称OKX,是一个全球领先的加密货币交易平台。文章提供了欧易官方安装包的下载入口,方便用户在不同设备上安装欧易客户端。该安装包支持 Windows、Mac、Android 和 iOS 系统,用户可根据自己的设备类型选择相应版本下载。安装完成后,用户即可注册或登录欧易账户,开始交易加密货币和享受平台提供的其他服务。

gate.io官网注册安装包链接 gate.io官网注册安装包链接 Feb 21, 2025 pm 08:15 PM

Gate.io 是一款备受赞誉的加密货币交易平台,以其广泛的代币选择、低廉的交易费用和用户友好的界面而闻名。凭借其先进的安全功能和优秀的客户服务,Gate.io 为交易者提供一个可靠且便利的加密货币交易环境。想要加入 Gate.io 的行列,欢迎点击提供的链接下载官方注册安装包,开启您的加密货币交易之旅。

如何在Ubuntu上使用nginx安装phpmyadmin? 如何在Ubuntu上使用nginx安装phpmyadmin? Feb 07, 2025 am 11:12 AM

该教程指导您在Ubuntu系统上安装和配置Nginx和PhpMyAdmin,并可能与现有的Apache服务器一起安装和配置。 我们将介绍设置NGINX,解决与Apache的潜在端口冲突,安装Mariadb(

See all articles