首页 数据库 mysql教程 SQL解析顺序_MySQL

SQL解析顺序_MySQL

May 27, 2016 pm 01:46 PM
架构 流程 顺序

前言:

 

一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。

 

本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。

 

一、MySQL架构总览:

 

架构最好看图,再配上必要的说明文字。

 

下图根据参考书籍中一图为原本,再在其上添加上了自己的理解。

SQL解析顺序_MySQL

从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer’,下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer’。其它各个模块和组件,从名字上就可以简单了解到它们的作用,这里就不再累述了。

 

二、查询执行流程

 

下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:

 

1.连接

 

1.1客户端发起一条Query请求,监听客户端的‘连接管理模块’接收请求

 

1.2将请求转发到‘连接进/线程模块’

 

1.3调用‘用户模块’来进行授权检查

 

1.4通过检查后,‘连接进/线程模块’从‘线程连接池’中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求

 

2.处理

 

2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回

 

2.2上一步有失败则转交给‘命令解析器’,经过词法分析,语法分析后生成解析树

 

2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树

 

2.4再转交给对应的模块处理

 

2.5如果是SELECT查询还会经由‘查询优化器’做大量的优化,生成执行计划

 

2.6模块收到请求后,通过‘访问控制模块’检查所连接的用户是否有访问目标表和目标字段的权限

 

2.7有则调用‘表管理模块’,先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件

 

2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理

 

2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中

 

3.结果

 

3.1Query请求完成后,将结果集返回给‘连接进/线程模块’

 

3.2返回的也可以是相应的状态标识,如成功或失败等

 

3.3‘连接进/线程模块’进行后续的清理工作,并继续等待请求或断开与客户端的连接

 

一图小总结

SQL解析顺序_MySQL

三、SQL解析顺序

 

接下来再走一步,让我们看看一条SQL语句的前世今生。

 

首先看一下示例语句

 

SELECT DISTINCT
    < select_list >
FROM
    < left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
    < where_condition >
GROUP BY
    < group_by_list >
HAVING
    < having_condition >
ORDER BY
    < order_by_condition >
LIMIT < limit_number >
登录后复制

然而它的执行顺序是这样的

 

 1 FROM <left_table>
 2 ON <join_condition>
 3 <join_type> JOIN <right_table>
 4 WHERE <where_condition>
 5 GROUP BY <group_by_list>
 6 HAVING <having_condition>
 7 SELECT 
 8 DISTINCT <select_list>
 9 ORDER BY <order_by_condition>
10 LIMIT <limit_number>
登录后复制

虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。

 

既然如此了,那就让我们一步步来看看其中的细节吧。

 

准备工作

 

1.创建测试数据库

 

create database testQuery

 

2.创建测试表

 

CREATE TABLE table1
(
    uid VARCHAR(10) NOT NULL,
    name VARCHAR(10) NOT NULL,
    PRIMARY KEY(uid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

CREATE TABLE table2
(
    oid INT NOT NULL auto_increment,
    uid VARCHAR(10),
    PRIMARY KEY(oid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;
登录后复制

3.插入数据

INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike');

 

INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);

 

4.最后想要的结果

 

SELECT
    a.uid,
    count(b.oid) AS total
FROM
    table1 AS a
LEFT JOIN table2 AS b ON a.uid = b.uid
WHERE
    a. NAME = &#39;mike&#39;
GROUP BY
    a.uid
HAVING
    count(b.oid) < 2
ORDER BY
    total DESC
LIMIT 1;
登录后复制

!现在开始SQL解析之旅吧!

 

1. FROM

 

当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。

 

(1-J1)笛卡尔积

 

计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。

 

mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| bbb | jack |   1 | aaa  |
| ccc | mike |   1 | aaa  |
| ddd | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   2 | aaa  |
| ccc | mike |   2 | aaa  |
| ddd | mike |   2 | aaa  |
| aaa | mike |   3 | bbb  |
| bbb | jack |   3 | bbb  |
| ccc | mike |   3 | bbb  |
| ddd | mike |   3 | bbb  |
| aaa | mike |   4 | bbb  |
| bbb | jack |   4 | bbb  |
| ccc | mike |   4 | bbb  |
| ddd | mike |   4 | bbb  |
| aaa | mike |   5 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   5 | bbb  |
| ddd | mike |   5 | bbb  |
| aaa | mike |   6 | ccc  |
| bbb | jack |   6 | ccc  |
| ccc | mike |   6 | ccc  |
| ddd | mike |   6 | ccc  |
| aaa | mike |   7 | NULL |
| bbb | jack |   7 | NULL |
| ccc | mike |   7 | NULL |
| ddd | mike |   7 | NULL |
+-----+------+-----+------+
28 rows in set (0.00 sec)
登录后复制

(1-J2)ON过滤

基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。

注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;

mysql> SELECT
    -> *
    -> FROM
    -> table1,
    -> table2
    -> WHERE
    -> table1.uid = table2.uid
    -> ;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   3 | bbb  |
| bbb | jack |   4 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   6 | ccc  |
+-----+------+-----+------+
6 rows in set (0.00 sec)
登录后复制

(1-J3)添加外部列

如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| aaa | mike |    2 | aaa  |
| bbb | jack |    3 | bbb  |
| bbb | jack |    4 | bbb  |
| bbb | jack |    5 | bbb  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
7 rows in set (0.00 sec)
登录后复制

下面从网上找到一张很形象的关于‘SQL JOINS'的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。

SQL解析顺序_MySQL

2. WHERE

对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。

注意:

此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;

与ON的区别:

如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;

如果没有添加外部列,两者的效果是一样的;

应用:

对主表的过滤应该放在WHERE;

对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| aaa | mike |    2 | aaa  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
4 rows in set (0.00 sec)
登录后复制

3. GROUP BY

这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。

注意:

其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;

原因:

GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;

我的理解是:

根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
3 rows in set (0.00 sec)
登录后复制

4. HAVING

这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
2 rows in set (0.00 sec)
登录后复制

5. SELECT

这个子句对SELECT子句中的元素进行处理,生成VT5表。

(5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1

(5-J2)DISTINCT

寻找VT5-1中的重复列,并删掉,生成VT5-J2

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)
登录后复制

6.ORDER BY

从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。

注意:

唯一可使用SELECT中别名的地方;

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)
登录后复制

7.LIMIT

LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。

注意:

offset和rows的正负带来的影响;

当偏移量很大时效率是很低的,可以这么做:

采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集

采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC
    -> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
+-----+-------+
1 row in set (0.00 sec)
登录后复制

至此SQL的解析之旅就结束了,上图总结一下:
SQL解析顺序_MySQL


本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
2 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

深度学习架构的对比分析 深度学习架构的对比分析 May 17, 2023 pm 04:34 PM

深度学习的概念源于人工神经网络的研究,含有多个隐藏层的多层感知器是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示,以表征数据的类别或特征。它能够发现数据的分布式特征表示。深度学习是机器学习的一种,而机器学习是实现人工智能的必经之路。那么,各种深度学习的系统架构之间有哪些差别呢?1.全连接网络(FCN)完全连接网络(FCN)由一系列完全连接的层组成,每个层中的每个神经元都连接到另一层中的每个神经元。其主要优点是“结构不可知”,即不需要对输入做出特殊的假设。虽然这种结构不可知使得完

此「错」并非真的错:从四篇经典论文入手,理解Transformer架构图「错」在何处 此「错」并非真的错:从四篇经典论文入手,理解Transformer架构图「错」在何处 Jun 14, 2023 pm 01:43 PM

前段时间,一条指出谷歌大脑团队论文《AttentionIsAllYouNeed》中Transformer构架图与代码不一致的推文引发了大量的讨论。对于Sebastian的这一发现,有人认为属于无心之过,但同时也会令人感到奇怪。毕竟,考虑到Transformer论文的流行程度,这个不一致问题早就应该被提及1000次。SebastianRaschka在回答网友评论时说,「最最原始」的代码确实与架构图一致,但2017年提交的代码版本进行了修改,但同时没有更新架构图。这也是造成「不一致」讨论的根本原因。

怎么开多个头条账号?申请头条号小号的流程是什么? 怎么开多个头条账号?申请头条号小号的流程是什么? Mar 22, 2024 am 11:00 AM

随着移动互联网的普及,今日头条已经成为我国最受欢迎的新闻资讯平台之一。许多用户希望在头条平台上拥有多个账号,以满足不同的需求。那么,如何开多个头条账号呢?本文将详细介绍开设多个头条账号的方法和申请流程。一、怎么开多个头条账号?开设多个头条账号的方法如下:在头条平台上,用户可以通过不同的手机号码注册账号。每个手机号只能注册一个头条账号,这意味着用户可以利用多个手机号注册多个账号。2.邮箱注册:使用不同的邮箱地址注册头条账号。与手机号码注册类似,每个邮箱地址也可以注册一个头条账号。3.第三方账号登录

多路径多领域通吃!谷歌AI发布多领域学习通用模型MDL 多路径多领域通吃!谷歌AI发布多领域学习通用模型MDL May 28, 2023 pm 02:12 PM

面向视觉任务(如图像分类)的深度学习模型,通常用来自单一视觉域(如自然图像或计算机生成的图像)的数据进行端到端的训练。一般情况下,一个为多个领域完成视觉任务的应用程序需要为每个单独的领域建立多个模型,分别独立训练,不同领域之间不共享数据,在推理时,每个模型将处理特定领域的输入数据。即使是面向不同领域,这些模型之间的早期层的有些特征都是相似的,所以,对这些模型进行联合训练的效率更高。这能减少延迟和功耗,降低存储每个模型参数的内存成本,这种方法被称为多领域学习(MDL)。此外,MDL模型也可以优于单

Spring Data JPA 的架构和工作原理是什么? Spring Data JPA 的架构和工作原理是什么? Apr 17, 2024 pm 02:48 PM

SpringDataJPA基于JPA架构,通过映射、ORM和事务管理与数据库交互。其存储库提供CRUD操作,派生查询简化了数据库访问。此外,它使用延迟加载,仅在必要时检索数据,从而提高了性能。

机器学习系统架构的十个要素 机器学习系统架构的十个要素 Apr 13, 2023 pm 11:37 PM

这是一个AI赋能的时代,而机器学习则是实现AI的一种重要技术手段。那么,是否存在一个通用的通用的机器学习系统架构呢?在老码农的认知范围内,Anything is nothing,对系统架构而言尤其如此。但是,如果适用于大多数机器学习驱动的系统或用例,构建一个可扩展的、可靠的机器学习系统架构还是可能的。从机器学习生命周期的角度来看,这个所谓的通用架构涵盖了关键的机器学习阶段,从开发机器学习模型,到部署训练系统和服务系统到生产环境。我们可以尝试从10个要素的维度来描述这样的一个机器学习系统架构。1.

1.3ms耗时!清华最新开源移动端神经网络架构 RepViT 1.3ms耗时!清华最新开源移动端神经网络架构 RepViT Mar 11, 2024 pm 12:07 PM

论文地址:https://arxiv.org/abs/2307.09283代码地址:https://github.com/THU-MIG/RepViTRepViT在移动端ViT架构中表现出色,展现出显着的优势。接下来,我们将探讨本研究的贡献所在。文中提到,轻量级ViTs通常比轻量级CNNs在视觉任务上表现得更好,这主要归功于它们的多头自注意力模块(MSHA)可以让模型学习全局表示。然而,轻量级ViTs和轻量级CNNs之间的架构差异尚未得到充分研究。在这项研究中,作者们通过整合轻量级ViTs的有效

golang框架架构的学习曲线有多陡峭? golang框架架构的学习曲线有多陡峭? Jun 05, 2024 pm 06:59 PM

Go框架架构的学习曲线取决于对Go语言和后端开发的熟悉程度以及所选框架的复杂性:对Go语言的基础知识有较好的理解。具有后端开发经验会有所帮助。复杂性不同的框架导致学习曲线差异。

See all articles