首页 > 后端开发 > Golang > golang怎么实现sgd

golang怎么实现sgd

PHPz
发布: 2023-03-29 13:42:54
原创
625 人浏览过

随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用于机器学习中参数优化的优化算法。在本文中,我们将介绍如何使用Go语言(Golang)实现SGD,并给出实现的例子。

  1. SGD 算法

SGD 算法的基本思想是在每一次迭代中,随机选取一些样本,并计算当前模型参数下这些样本的损失函数。然后在这些样本上计算梯度,并按照梯度的方向更新模型参数。这个过程会反复进行多次,直到满足停止条件。

具体来说,设 $f(x)$ 为损失函数,$x_i$ 为第 $i$ 个样本的特征向量,$y_i$ 为第 $i$ 个样本的输出,$w$ 为当前模型参数,SGD 的更新公式为:

$$w = w - \alpha \nabla f(x_i, y_i, w)$$

其中 $\alpha$ 为学习率(learning rate),$\nabla f(x_i, y_i, w)$ 表示在当前模型参数下计算第 $i$ 个样本的损失函数梯度。

  1. Golang 实现

在 Golang 中实现 SGD 算法需要用到的库有:gonumgonum/matgonum/stat。其中 gonum 是一个数学库,提供了许多常用的数学函数,gonum/mat 是用来处理矩阵和向量的库,gonum/stat 则提供了统计学函数(如均值、标准差等)。

下面是一个简单的 Golang 实现:

package main

import (
    "fmt"
    "math/rand"

    "gonum.org/v1/gonum/mat"
    "gonum.org/v1/gonum/stat"
)

func main() {
    // 生成一些随机的数据
    x := mat.NewDense(100, 2, nil)
    y := mat.NewVecDense(100, nil)
    for i := 0; i < x.RawMatrix().Rows; i++ {
        x.Set(i, 0, rand.Float64())
        x.Set(i, 1, rand.Float64())
        y.SetVec(i, float64(rand.Intn(2)))
    }

    // 初始化模型参数和学习率
    w := mat.NewVecDense(2, nil)
    alpha := 0.01

    // 迭代更新模型参数
    for i := 0; i < 1000; i++ {
        // 随机选取一个样本
        j := rand.Intn(x.RawMatrix().Rows)
        xi := mat.NewVecDense(2, []float64{x.At(j, 0), x.At(j, 1)})
        yi := y.AtVec(j)

        // 计算损失函数梯度并更新模型参数
        gradient := mat.NewVecDense(2, nil)
        gradient.SubVec(xi, w)
        gradient.ScaleVec(alpha*(yi-gradient.Dot(xi)), xi)
        w.AddVec(w, gradient)
    }

    // 输出模型参数
    fmt.Println(w.RawVector().Data)
}
登录后复制

这个实现的数据集是一个 $100 \times 2$ 的矩阵,每一行代表一个样本,每个样本有两个特征。标签 $y$ 是一个 $100 \times 1$ 的向量,每个元素都是 0 或 1。代码中的迭代次数为 1000 次,学习率 $\alpha$ 为 0.01。

在每一次迭代中,随机选取一个样本,并在这个样本上计算损失函数梯度。梯度计算完成后,使用上面的公式更新模型参数。最后输出模型参数。

  1. 总结

本文介绍了如何使用 Golang 实现 SGD 算法,并给出了一个简单的例子。在实际应用中,SGD 算法也有一些变体,如带动量的 SGD、AdaGrad、Adam 等。读者可以根据自己的需求选择使用哪种算法。

以上是golang怎么实现sgd的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板