人工智能如何为数据中心团队带来新的日常工作
在超大规模环境中,秘密功能和微观优化可能会带来实实在在的好处,但对于大众市场来说,这可能是不必要的。如果做到这一点至关重要,那么向云的转移将受到量身定制的网络解决方案的出现的限制,但遗憾的是,事实并非如此。
在生成文本、艺术和视频方面的突破性用例的推动下,人工智能已经从遥远的想象变成了短期的当务之急。它正在影响人们对各个领域的思考方式,数据中心网络当然也不能幸免。但是人工智能在数据中心可能意味着什么呢?人们将如何开始?
虽然研究人员可能会解锁一些网络控制的算法方法,但这似乎不是人工智能在数据中心的主要用例。简单的事实是,数据中心连接在很大程度上是一个已解决的问题。
在超大规模环境中,秘密功能和微观优化可能会带来实实在在的好处,但对于大众市场来说,这可能是不必要的。如果做到这一点至关重要,那么向云的转移将受到量身定制的网络解决方案的出现的限制,但遗憾的是,事实并非如此。
如果人工智能要给人留下持久的印象,它必须在操作方面。实现网络化所需的工作流程和活动的网络化实践将成为战场。与该行业15年来围绕自动化的雄心相结合,这实际上很有道理。人工智能能否提供所需的技术推动,最终使行业从梦想运营优势转变为积极利用自动化、半自主运营?
确定性还是随机性?
这似乎是可能的,但这个问题的答案有细微差别。在宏观层面上,数据中心有两种不同的操作行为:一种是确定性的并导致已知结果的操作行为,另一种是随机或概率的操作行为。
对于确定性的工作流程来说,人工智能不仅仅是矫枉过正;这完全没有必要。更具体地说,对于已知的架构,驱动设备所需的配置不需要人工智能引擎来处理。它需要从体系结构蓝图转换为特定于设备的语法。
即使在最复杂的情况下(具有不同规模需求的多供应商体系结构),配置也可以完全预先确定。可能会有嵌套逻辑来处理设备类型或供应商配置的变化,但嵌套逻辑很难称得上人工智能。
但即使在配置之外,许多第二天的操作任务也不需要人工智能。例如,以营销人员多年来一直使用人工智能的一个更常见的用例为例:资源阈值。其逻辑是,人工智能可以确定CPU或内存使用率等关键阈值何时被超过,然后采取一些补救措施。
阈值并没有那么复杂。数学家和人工智能纯粹主义者可能会评论说,线性回归并不是真正的智能。相反,这是基于趋势线的相当粗略的逻辑,重要的是,在人工智能成为时尚术语之前,这些东西就已经出现在各种生产环境中了。
那么,这是否意味着人工智能没有任何作用?绝对不是!这确实意味着人工智能不是一种要求,甚至不是适用于一切,但网络中有一些工作流程可以也将受益于人工智能。那些概率性而非确定性的工作流程将是最好的候选者。
作为潜在候选者进行故障排除
对于概率工作流来说,可可能没有比根本原因分析和故障排除更好的候选者了。当出现问题时,网络运营商和工程师会进行一系列活动,旨在排除问题,并有望找出根本原因。
对于简单的问题,工作流可能会被脚本化。但对于最基本的问题以外的任何问题,操作员都在应用一些逻辑,并选择最可能但不是预先确定的前进路径。根据个人所知或所学,进行一些提炼,要么寻求更多信息,要么进行猜测。
人工智能在这方面可以发挥作用。我们之所以知道这一点,是因为我们了解故障排除过程中经验的价值。一名新员工,无论他们有多熟练,通常都会表现得不如那些任期很长的人里。人工智能可以替代或补充所有根深蒂固的经验,而自然语言处理(NLP)的最新进展有助于平滑人机界面。
人工智能从数据开始
最好的葡萄酒始于最好的葡萄。同样,最好的人工智能将从最好的数据开始。这意味着,设备齐全的环境将被证明是人工智能驱动的操作最肥沃的环境。超大规模企业在人工智能的道路上肯定比其他企业走得更远,这在很大程度上得益于他们的软件专业知识。但不可忽视的是,他们在建立数据中心时非常重视通过流遥测和大规模收集框架实时收集信息。
想要在某种程度上利用人工智能的企业应该检查他们目前的遥测能力。基本上,现有的架构是否有助于或阻碍了任何严肃的追求?然后架构师需要将这些操作需求构建到底层架构评估过程中。在企业中,运营往往是在设备通过采购部门后才进行的一些附加工作。对于任何一个希望有一天能利用简单脚本操作之外的任何东西的数据中心来说,这都不是常态。
回到确定性或随机的问题,这个问题真的不应该被框定为一个非此即彼的命题。双方都有各自的角色。两者都要发挥作用。每个数据中心都将具有一组确定性的工作流程,并且有机会在概率世界中做一些突破性的事情。这两者都将受益于数据。因此,无论目标和起点如何,每个人都应该专注于数据。
期望值降低
对大多数企业来说,成功的关键在于降低预期。未来有时是由宏伟的宣言来定义的,但通常情况下,愿景越宏伟,就越显得遥不可及。
如果下一波进步更多地是由无聊的创新而不是夸张的承诺推动呢?如果减少麻烦单和人为错误足以让人们开始行动呢?瞄准正确的目标会让人们更容易成长。在一个缺乏足够人才来满足每个人雄心勃勃的议程的环境中,情况尤其如此。因此,即使人工智能趋势在未来几年进入幻灭低谷,数据中心运营商仍有机会为其业务带来有意义的改变。
以上是人工智能如何为数据中心团队带来新的日常工作的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在2024年4月15日消息,Gartner最近发布的一份2024年CIO和技术高管调研显示,超过60%的中国企业计划在未来12至24个月内部署生成式人工智能(GenAI)。由于中国企业倾向于在本地而非通过公有云部署GenAI,目前的基础设施环境无法支持GenAI项目。这将推动中国企业数据中心的设计转型。Gartner研究总监张吕铿表示:“由于安全和数据隐私方面的担忧以及监管要求,一些企业更倾向于在本地部署GenAl解决方案或微调大语言模型(LLM)。在本地部署GenAl对于数据中心来说并不仅仅是

本站6月18日消息,三星半导体近日在技术博客介绍了搭载其目前最新QLC闪存(v7)的下一代数据中心级固态硬盘BM1743。▲三星QLC数据中心级固态硬盘BM1743根据TrendForce集邦咨询4月的说法,在QLC数据中心级固态硬盘领域,仅有深耕多年的三星和SK海力士旗下Solidigm在当时通过了企业客户验证。相较上代v5QLCV-NAND(本站注:三星v6V-NAND无QLC产品),三星v7QLCV-NAND闪存在堆叠层数方面几乎翻了一倍,存储密度也大幅提升。同时v7QLCV-NAND的顺

生成式人工智能(AI)的快速崛起凸显了企业采用人工智能的惊人速度。根据Accenture最近的一份报告,98%的企业领导人表示人工智能将在未来三到五年的战略中扮演重要角色。麦肯锡分析师发现,近65%的企业计划在未来三年内增加对人工智能的投资NVIDIA、AMD和Intel正在推出专为生成式人工智能和高性能计算(HPC)设计的新芯片,这种势头才刚刚开始。公共云提供商和新兴芯片企业也参与了竞争。IDC分析师预测,全球对人工智能软件、硬件和服务的支出将达到3000亿美元,超过今年预计的1540亿美元然

本站1月19日消息,据浪潮服务器官方消息,1月18日,浪潮信息与英特尔联合发布全球首个全液冷冷板服务器参考设计,并面向业界开放,推动全液冷冷板解决方案在全球数据中心的大规模部署应用。基于该参考设计,浪潮信息推出全液冷冷板服务器,号称实现服务器部件接近100%液冷散热,达到PUE值接近于1的水平。本站注:PUE是PowerUsageEffectiveness的缩写,计算公式为“数据中心总能耗/IT设备能耗”,其中数据中心总能耗包括IT设备能耗和制冷、配电等系统的能耗,PUE越接近1代表非IT设备耗

随着互联网的快速发展,网站的访问量也在不断增长。为了满足这一需求,我们需要构建高可用性的系统。分布式数据中心就是这样一个系统,它将各个数据中心的负载分散到不同的服务器上,增加系统的稳定性和可扩展性。在PHP开发中,我们也可以通过一些技术实现分布式数据中心。分布式缓存分布式缓存是互联网分布式应用中最常用的技术之一。它将数据缓存在多个节点上,提高数据的访问速度和

随着对数据处理和存储的需求持续激增,数据中心正在努力应对不断发展和扩展的挑战。平台、设备设计、拓扑结构、功率密度要求和冷却需求的不断变化都强调了对新结构设计的迫切需求。数据中心基础设施通常难以将当前和预计的IT负载与其关键基础设施保持一致,从而导致不匹配,威胁到它们满足不断升级的需求的能力。在此背景下,必须修改传统的数据中心方法。数据中心现在正在将人工智能(AI)和机器学习(ML)技术集成到其基础架构中,以保持竞争力。通过在传统数据中心架构中实施人工智能驱动层,企业可以创建自主数据中心,无需人工

托管数据中心通常设计用来容纳数十甚至数百个客户的不同应用程序。不过,英伟达提供了一种独特的数据中心模式,该数据中心专门为单一客户运行特定应用程序。“人工智能工厂”的出现这种新型的数据中心与传统数据中心不同,它专注于提供更高效、更灵活的基础设施服务。传统数据中心往往承载多个应用程序和多个租户,而新型数据中心更注重资源的动态分配和优化,以满足不同应用程序和租户的需求。这种新型数据中心的设计更加灵活和智能,能够根据需求实时调整资源分配,提高整体效率和性能。通过这种创新的设计理念,这些新的数据中心主要用

近日有一些小伙伴咨询小编咪咕视频怎么进入数据中心?下面就为大家带来了咪咕视频进入数据中心的方法,有需要的小伙伴可以来了解了解哦。1、打开咪咕视频APP,在首页点击右下角我的(如图所示)。2、点击数据中心(如图所示)。3、即可查看到全部数据(如图所示)。
