全面了解大语言模型,这有一份阅读清单
了解当代大型语言模型背后的设计、约束和演变,你可以遵循本文的阅读清单。
大型语言模型已经引起了公众的注意,短短五年内,Transforme等模型几乎完全改变了自然语言处理领域。此外,它们还开始在计算机视觉和计算生物学等领域引发革命。
鉴于Transformers对每个人的研究进程都有如此大的影响,本文将为大家介绍一个简短的阅读清单,供机器学习研究人员和从业者入门使用。
下面的列表主要是按时间顺序展开的,主要是一些学术研究论文。当然,还有许多其他有用的资源。例如:
- Jay Alammar撰写的《The Illustrated Transformer》
- Lilian Weng撰写的《The Transformer Family》
- Xavier Amatriain撰写的《Transformer models: an introduction and catalog — 2023 Edition》
- Andrej Karpathy写的nanoGPT库
对主要架构和任务的理解
如果你是Transformers、大型语言模型新手,那么这几篇文章最适合你。
论文1:《Neural Machine Translation by Jointly Learning to Align and Translate》
论文地址:https://arxiv.org/pdf/1409.0473.pdf
本文引入了一种循环神经网络(RNN)注意力机制,提高了模型远程序列建模能力。这使得RNN能够更准确地翻译较长的句子——这也是后来开发原始Transformer架构的动机。
图源: https://arxiv.org/abs/1409.0473
论文2:《Attention Is All You Need》
论文地址:https://arxiv.org/abs/1706.03762
本文介绍了由编码器和解码器组成的原始Transformer架构,这些部分将在以后作为单独模块进行相关介绍。此外,本文还介绍了缩放点积注意力机制、多头注意力块和位置输入编码等概念,这些概念仍然是现代Transformer的基础。
图源:https://arxiv.org/abs/1706.03762
论文3:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》
论文地址:https://arxiv.org/abs/1810.04805
大型语言模型研究遵循最初的Transformer架构,然后开始向两个方向延伸:用于预测建模任务(如文本分类)的Transformer和用于生成建模任务(如翻译、摘要和其他形式的文本创建)的Transformer 。
BERT论文介绍了掩码语言建模原始概念,如果你对这个研究分支感兴趣,那么可以跟进RoBERTa,其简化了预训练目标。
图源:https://arxiv.org/abs/1810.04805
论文4:《Improving Language Understanding by Generative Pre-Training》
论文地址:https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
最初的GPT论文介绍了流行的解码器风格的架构和通过下一个单词预测进行预训练。BERT由于其掩码语言模型预训练目标,可以被认为是一个双向Transformer,而GPT是一个单向自回归模型。虽然GPT嵌入也可以用于分类,但GPT方法是当今最有影响力的LLMs(如ChatGPT)的核心。
如果你对这个研究分支感兴趣,那么可以跟进GPT-2和GPT-3的论文。此外,本文将在后面单独介绍InstructGPT方法。
论文5:《BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension》
论文地址 https://arxiv.org/abs/1910.13461.
如上所述, BERT型编码器风格的LLM通常是预测建模任务的首选,而GPT型解码器风格的LLM更擅长生成文本。为了两全其美,上面的BART论文结合了编码器和解码器部分。
扩展定律与效率提升
如果你想了解更多关于提高Transformer效率的技术,可以参考以下论文
- 论文1:《A Survey on Efficient Training of Transformers》
- 论文地址:https://arxiv.org/abs/2302.01107
- 论文2:《FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness》
- 论文地址:https://arxiv.org/abs/2205.14135
- 论文3:《Cramming: Training a Language Model on a Single GPU in One Day》
- 论文地址:https://arxiv.org/abs/2212.14034
- 论文4:《Training Compute-Optimal Large Language Models》
- 论文地址:https://arxiv.org/abs/2203.15556
此外,还有论文《Training Compute-Optimal Large Language Models》
论文地址:https://arxiv.org/abs/2203.15556
本文介绍了700亿参数的Chinchilla模型,该模型在生成建模任务上优于流行的1750亿参数的GPT-3模型。然而,它的主要点睛之处在于,当代大型语言模型训练严重不足。
本文定义了用于大型语言模型训练的线性scaling law。例如,虽然Chinchilla的大小只有GPT-3的一半,但它的表现优于GPT-3,因为它是在1.4万亿(而不是3000亿)token上进行训练的。换句话说,训练token的数量和模型大小一样重要。
对齐——将大型语言模型朝着预期的目标和兴趣引导
近年来出现了许多相对强大的大型语言模型,它们可以生成真实的文本(例如GPT-3和Chinchilla)。就常用的预训练范式而言,目前似乎已经达到了一个上限。
为了使语言模型更能帮助到人类,减少错误信息和不良语言,研究人员设计了额外的训练范式来微调预训练的基础模型,包括如下论文。
- 论文1:《Training Language Models to Follow Instructions with Human Feedback》
- 论文地址:https://arxiv.org/abs/2203.02155
在这篇所谓的InstructGPT论文中,研究人员使用了RLHF(Reinforcement Learning from Human Feedback)。他们从预训练的GPT-3基础模型开始,并使用监督学习对人类生成的提示响应对进行进一步微调(步骤1)。接下来,他们要求人类对模型输出进行排序以训练奖励模型(步骤2)。最后,他们使用奖励模型通过近端策略优化(步骤3)使用强化学习来更新预训练和微调的GPT-3模型。
顺便说一句,这篇论文也被称为描述ChatGPT背后思想的论文——根据最近的传言,ChatGPT是InstructGPT的扩展版本,它在更大的数据集上进行了微调。
- 论文2:《Constitutional AI: Harmlessness from AI Feedback》
- 论文地址:https://arxiv.org/abs/2212.08073
在这篇论文中,研究人员进一步推进了对齐的想法,提出了一种创建「harmless」的AI系统的训练机制。研究人员提出了一种基于规则列表(由人类提供)的自训练机制,而不是直接由人类监督。与上面提到的InstructGPT论文类似,所提出的方法使用了强化学习方法。
总结
本文对上方表单的排列尽量保持简洁美观,建议重点关注前10篇论文,以了解当代大型语言模型背后的设计、局限和演变。
如果想深入阅读,建议参考上述论文中的参考文献。或者,这里有一些额外的资源,供读者进一步研究:
GPT的开源替代方案
- 论文1:《BLOOM: A 176B-Parameter Open-Access Multilingual Language Model》
- 论文地址:https://arxiv.org/abs/2211.05100
- 论文2:《OPT: Open Pre-trained Transformer Language Models》
- 论文地址:https://arxiv.org/abs/2205.01068
ChatGPT的替代方案
- 论文1《LaMDA: Language Models for Dialog Applications》
- 论文地址:https://arxiv.org/abs/2201.08239
- 论文2:《Improving alignment of dialogue agents via targeted human judgements》
- 论文地址:https://arxiv.org/abs/2209.14375
- 论文3:《BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage》
- 论文地址:https://arxiv.org/abs/2208.03188
计算生物学中的大型语言模型
- 论文1:《 ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Learning 》
- 论文地址:https://arxiv.org/abs/2007.06225
- 论文2:《Highly accurate protein structure prediction with AlphaFold》
- 论文地址:https://www.nature.com/articles/s41586-021-03819-2
- 论文3:《Large Language Models Generate Functional Protein Sequences Across Diverse Families》
- 论文地址:https://www.nature.com/articles/s41587-022-01618-2
以上是全面了解大语言模型,这有一份阅读清单的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩

选择加密货币交易所的建议:1. 流动性需求,优先选择币安、Gate.io或OKX,因其订单深度与抗波动能力强。2. 合规与安全,Coinbase、Kraken、Gemini具备严格监管背书。3. 创新功能,KuCoin的软质押和Bybit的衍生品设计适合进阶用户。

适合新手的加密货币数据平台有CoinMarketCap和非小号。1. CoinMarketCap提供全球加密货币实时价格、市值、交易量排名,适合新手与基础分析需求。2. 非小号提供中文友好界面,适合中文用户快速筛选低风险潜力项目。

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。
