杭电小哥抢先搞定GPT读图功能,单卡就能实现新SOTA,代码已开源
目前该论文已经被CVPR2023接收。
能读图的GPT-4震撼发布了!但要用它还得排队。。。
不如先试试这个~
加上一个小模型,就能让ChatGPT、GPT-3这类目前只能理解文本的大语言模型轻松读图,各种刁钻的细节问题都能手拿把掐。
并且训练这个小模型单卡(一块RTX 3090)就能搞定。
效果呢,直接看图。
比如说,给训练后的GPT-3输入一张“音乐现场”的图片,问它:现场在举办什么活动?
毫不迟疑,GPT-3给出了音乐会的答案。
再来加点难度,再给GPT-3酱紫的一张照片,让它来分辨照片中的帘子是什么类型的材质。
GPT-3:蕾丝。
Bingo!(看来是有点儿东西在身上的)
这个方法呢,是杭州电子科技大学和合肥工业大学的一个团队的最新成果:Prophet,半年前他们就已经着手进行这项工作。
论文一作是杭电研究生邵镇炜,他在1岁那年被诊断患有“进行性脊肌萎缩症”,高考时遗憾与浙大擦肩,选择了离家近的杭州电子科技大学。
目前该论文已经被CVPR2023接收。
跨模态任务上达到新SOTA
话不多说,直接来看在Prophet这种方法的加持下GPT-3的读图能力。
我们先来看看它在数据集上的测试结果。
研究团队在两个基于外部知识的视觉问答数据集OK-VQA和A-OKVQA测试了Prophet,均创造了新SOTA。
更具体点,在OK-VQA数据集上,和Deepmind的拥有80B参数的大模型Flamingo对比,Prophet达到了61.1%的准确率,成功击败Flamingo(57.8%)。
并且在所需要的算力资源上,Prophet也是“吊打”Flamingo。
Flamingo-80B需要在1536块TPUv4显卡上训练15天,而Prophet只需要一块RTX-3090显卡训练VQA模型4天,再调用一定次数的OpenAI API即可。
其实,类似Prophet这种帮助GPT-3处理跨模态任务的方法之前也有,比如说PICa,以及之后的KAT和REVIVE。
不过它们在一些细节问题的处理中,可能就不尽如人意。
举个栗子,让它们一起读下面这张图,然后回答问题:图片中的树会结什么水果?
而PICa、KAT和REVIVE从图片中提取到的信息只有:一群人在广场上走路,完全忽略掉了后面还有一颗椰子树。最终给出的答案也只能靠瞎猜。
而Prophet这边,就不会出现这种情况,它解决了上述方法提取图片信息不充分的问题,进一步激发了GPT-3的潜能。
那Prophet是怎么做的呢?
小模型+大模型
有效提取信息,并准确回答问题,能做到这些Prophet依赖的是它独特的两阶段框架。
这两个阶段也分工明确:
- 第一阶段:根据问题给出一些具有启发性的答案;
- 第二阶段:这些答案会缩一些范围,使GPT-3有充分的空间发挥潜能。
首先是第一阶段,研究团队针对特定的外部知识VQA数据集训练了一个改进的MCAN模型(一个VQA模型)。
训练好模型后,从中提取两种具有启发性的答案:答案候选和答案感知示例。
其中,答案候选是以模型分类层输出的置信度为依据对答案进行排序,选取里面的top10。
答案感知示例时指,将模型分类层之前的特征作为样本的潜在答案特征,这个特征空间中最相近的标注样本。
接下来就是第二阶段,这一步相对来说就很简单粗暴了。
讲上一步得到的“启发性答案”组织到prompt中,然后再将prompt输入给GPT-3,在一定的提示之下完成视觉问答问题。
不过虽然上一步已经给出一些答案提示,但这并不意味着GPT-3就要局限在这些答案中。
若提示给出的答案置信度太低或者正确答案并不在那些提示中,GPT-3完全完全有可能生成新的答案。
研究团队
当然,除了研究成果外,这项研究背后的团队也不得不提。
第一作者邵镇炜在1岁时就确诊“进行性脊肌萎缩症”,是肢体一级残疾,没有生活自理能力,生活和学习需要母亲的全程照顾。
不过虽然身体受限,但邵镇炜对知识的渴求并没有减弱。
2017年高考他拿下644分的高分,以第一名的成绩被杭州电子科技大学计算机专业录取。
期间还获得2018年中国大学生自强之星、2020年度国家奖学金和2021年度浙江省优秀毕业生等荣誉。
本科期间,邵镇炜就已经开始跟着余宙教授进行科研活动。
2021年,邵镇炜在准备研究生推免时与浙大擦肩,于是留校加入了余宙教授课题组攻读硕士研究生,目前他在读研二,研究方向是跨模态学习。
余宙教授则是本次研究论文的二作以及通讯作者,他是杭电计算机学院最年轻的教授,教育部“复杂系统建模与仿真”实验室副主任。
长期以来,余宙专攻多模态智能方向,曾带领研究团队多次获得国际视觉问答挑战赛VQA Challenge的冠亚军。
研究团队的大部分成员都在杭电媒体智能实验室(MIL)。
该实验室由国家杰青俞俊教授负责,近年来实验室围绕多模态学习方向发表一系列高水平期刊会议论文(TPAMI、IJCV、CVPR等),多次获得IEEE期刊会议的最佳论文奖。
实验室主持国家重点研发计划、国家自然科学基金重点项目等国家级项目20余项,曾获得过浙江省自然科学一等奖,教育自然科学二等奖。
以上是杭电小哥抢先搞定GPT读图功能,单卡就能实现新SOTA,代码已开源的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

选择加密货币交易所的建议:1. 流动性需求,优先选择币安、Gate.io或OKX,因其订单深度与抗波动能力强。2. 合规与安全,Coinbase、Kraken、Gemini具备严格监管背书。3. 创新功能,KuCoin的软质押和Bybit的衍生品设计适合进阶用户。

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

绘制比特币结构分析图的步骤包括:1. 确定绘图目的与受众,2. 选择合适的工具,3. 设计框架并填充核心组件,4. 参考现有模板。完整的步骤确保图表准确且易于理解。

适合新手的加密货币数据平台有CoinMarketCap和非小号。1. CoinMarketCap提供全球加密货币实时价格、市值、交易量排名,适合新手与基础分析需求。2. 非小号提供中文友好界面,适合中文用户快速筛选低风险潜力项目。
