首页 数据库 mysql教程 导数中的最小化日志记录:背景和理论_MySQL

导数中的最小化日志记录:背景和理论_MySQL

May 27, 2016 pm 04:57 PM
理论 背景

什么是最小化日志(Minimal Logging)?

 

当数据库的恢复模式为SIMPLE或者BULK_LOGGED时,对于最小化日志类型的操作,事务日志不记录单独每个数据行的日志,而是记录对应页和区结构的修改日志。

这样显著减少了操作产生的事务日志数量。例如,向某个数据页上插入200行数据,在最小化日志记录的情况下,只会记录一条此数据页变化的日志,而不是200条Insert日志。

 

最小化日志类型的操作

SELECT INTO 

Bulk导数操作,包括 BULK INSERT和BCP

INSERT INTO . . . SELECT,包括两种情况:

 

a) SELECT中使用OPENROWSET(BULK. . .) 

 

b)目标表不具有非聚集索引,向其插入超过8页的数据量,并且使用了TABLOCK时。如果目标表为空,可以有聚集索引,如果不为空,则不可以。

 

部分更新大值类型的列

 

UPDATE中使用.WRITE插入数据或追加数据时

 

对LOB字段使用WRITETEXT和UPDATETEXT插入或者追加新数据,不包括更新。

 

索引操作,包括在表/视图上CREATE INDEX,ALTER INDEX REBUILD,DBCC DBREINDEX,DROP INDEX(新堆的重新生成将按最小方式记录)

 

数据导入中的最小化日志记录

 

本文关注的是数据导入的最小化日志记录,指BULK INSERT导数操作。很多理论在其它类型的操作上是通用的。

  

1. 普通的INSERT

 

SQL Server中使用锁和日志记录来保证数据库事务的ACID属性。在插入一行数据的整个事务期间,为了避免并发事务访问,这一行会被锁定;

 

同样这一行还会被写入日志记录。插入一行数据的大概的步骤如下:

 

通过行锁锁定行。

 

写入日志记录。日志记录包含被插入行的完整数据。

 

数据行被写入数据页。

 

多行插入时,每一行都会重复以上步骤。这里指大概操作原型,实际处理复杂的多,如锁升级,约束检查等等

 

2. BULK导入

 

当BULK导入提交事务时,事务使用到的所有数据页会被写入磁盘,这样来保证事务原子性。相当于每次提交事务时都做一次CHECKPOINT。如果需要回滚BULK事务,SQL Server会检索日志获取事务涉及的页或者区信息,然后将之重新标记为未使用。备份事务日志时会将BULK涉及的数据页和索引页都备份到日志备份中。还原包含BULK事务的日志备份时,不支持还原到指定时间点。

 

每个数据文件第八个页是BCM页(BULK Chandged Map),之后每隔511230页会有一个BCM页。BCM上的每一位(Bit)代表着一个区,如果此位为1,则表示自上次BACKUP LOG后,这个区被BULK类型操作修改过。再下次日志备份时,会将这些被修改过的区复制到日志备份中。

 

3. 使用最小日志记录导入数据时需要满足的条件

 

并不是任何情况下都可以实现最小日志导数,判断逻辑如下(来自Itzik Ben-Gan)

 

a) SQL Server 2008之前的版本判断逻辑:

non-FULL recovery model

AND NOT replicated

AND TABLOCK

AND (

               Heap

               OR (B-tree AND empty)

       )

 

      b) SQL Server 2008及以后版本的判断逻辑:

Non-FULL recovery model

AND NOT replicated

AND (

          (Heap AND TABLOCK)

          OR (B-tree AND empty AND TABLOCK)

          OR (B-tree AND empty AND TF-610)

          OR (B-tree AND nonempty AND TF-610 AND key-range)

 

从SQL 2008开始可以使用跟踪标记610和排它键范围锁,实现空/非空聚集索引表的最小化日志操作。

 

排他键范围锁的作用例子:聚集索引表tb(id INT),目前有4行数据,分别为1,1000,2000,3000。现在需要向表中插入500行数据,这些数据的值区间为[1001,1500]。

 

当插入时,SQL Server不需要获取聚集索引整体的排它锁(像tablock这种),而只是获取原有键值区间的排它键范围锁。这里就是在(1000,2000)区间上获取X KEY-RANGE LOCK。而不在这个区间的数据,仍然可以被其它进程访问。如果要实现非空索引表的最小化日志记录导数,需要预先将导入数据按目标表的索引键值列进行排序,并启用跟踪标记610。

 

从上面的判断逻辑可以看出,实现最小日志记录的大前提是:数据库不是完整恢复模式且表没有标记为复制。对于堆表总是需要使用TABLOCK。对于索引表,则要分为空表和非空表两种情况来处理。这部分内容在后文的例子再展开来说明。

 

观察BULK导入的日志

 

使用未公开的系统函数sys.fn_dblog查找相关的日志内容。fn_dblog接受两个参数用以指定要查询的日志区间,分别表示开始和结束的LSN。输出字段中,此文需要关注的是Operation, Context, Log Record Length和AllocUnitName。因为是未公开的的函数,所以输出内容代表的意义,需要结合个人经验和大家的“共识”来解读。

 

Operation(LOP):表示执行何种日志操作, 例如修改行为LOP_MODIFY_ROW,设置位图页时为LOP_SET_BITS等等。

 

Context(LCX):日志操作的上下文,一般表示受影响的对象类型。例如LCX_GAM,LCX_HEAP,LCX_PFS等。

 

Log Record Length:以byte为单位的日志长度

AllocUnitName:表示受影响的具体对象

使用如下脚本进行分析,脚本来自Jakub K 

 

-- 日志条目录数据和总大小
SELECT COUNT(*)AS numrecords,
  CAST((COALESCE(SUM([Log Record LENGTH]), 0))
    / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb
FROM sys.fn_dblog(NULL, NULL) AS D
WHERE AllocUnitName = 'dbo.tableName' OR AllocUnitName LIKE 'dbo.tableName.%';

-- 各类型日志的平均长度和数量
SELECT Operation, Context,
  AVG([Log Record LENGTH]) AS AvgLen, COUNT(*) AS Cnt
FROM sys.fn_dblog(NULL, NULL) AS D
WHERE AllocUnitName = 'dbo.tableName' OR AllocUnitName LIKE 'dbo.tableName.%'
GROUP BY Operation, Context, ROUND([Log Record LENGTH], -2)
ORDER BY AvgLen, Operation, Context;
登录后复制

 


本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架 自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架 Jun 22, 2024 am 06:43 AM

编辑|紫罗AI在简化药物发现方面的应用正在爆炸式增长。从数十亿种候选分子中筛选出可能具有开发新药所需特性的分子。需要考虑的变量太多了,从材料价格到出错的风险,即使科学家使用AI,权衡合成最佳候选分子的成本也不是一件容易的事。在此,MIT研究人员开发了一个定量决策算法框架SPARROW,来自动识别最佳分子候选物,从而最大限度地降低合成成本,同时最大限度地提高候选物具有所需特性的可能性。该算法还确定了合成这些分子所需的材料和实验步骤。SPARROW考虑了一次合成一批分子的成本,因为多个候选分子通常可

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles