通过使用因果机器学习做出有效的可操作决策以优化业务KPI
机器学习平台Azure Machine Learning Studio中的因果分析,可以通过端到端自动化框架回答因果问题。
译者 | 李睿
审校 | 孙淑娟
在不同的场景中,常用的机器学习建模技术可能会误解数据中的真实关系。因此在这里试图改变这种范式,以基于估计因果关系和衡量目标关键绩效指标(KPI)结果的治疗效果,找到超越虚假相关性的可操作见解。
因果机器学习的动机
假设获得了某家企业在过去一年某一产品的历史数据或观察数据,面这一产品有5%的顾客流失,那么这家企业的目标是通过开展有针对性的活动来降低流失率。通常会构建经典的客户流失预测性倾向模型(倾向性评分——客户行为的协变量流失概率),并通过选择阈值规定折扣或向客户追加销售/交叉销售。
现在,企业管理人员想要预测客户流失的有效性,例如该公司的客户是由于促销活动或营销活动而保留下来的,还是与其相反?这需要传统的AB测试标准实验,实验需要一些时间,而且在某些情况下也不可行并且成本高昂。
因此需要思考倾向模型之外的问题。具有监督的流失预测是有用的,但不是每次都有用,因为它缺乏在假设情况下推荐下一个最佳行动的建议。针对那些能够积极响应企业的营销建议而不会在失败案例上浪费资金的个性化客户,从而采取下一个最佳行动/干预并改变未来结果(例如最大限度地提高保留率)的问题是因果推断中的提升建模。
在理解消费世界中的某些反事实问题时,例如如果提高或降低零售价格,消费者的行为会如何改变(价格对行为模式的影响是什么)?如果企业向顾客展示广告,他们会不会购买产品(广告对购买的影响)?这其中包括通过因果建模的数据驱动决策。
在通常情况下,预测或预测问题关注的是在下个月有多少人会订阅,而因果问题则是如果某些政策发生改变会发生什么情况(例如,如果开展一项活动会有多少人订阅)。
因果分析将更进一步。它旨在推断数据生成过程的各个方面。借助这些方面,人们不仅可以推断静态条件下事件的可能性,还可以推断变化条件下事件的动态。这种能力包括预测行动的效果(例如,治疗或政策决定),确定所报告事件的原因,以及评估责任和归因(例如,事件x对于事件y的发生是否必要或足够)。
当人们使用监督机器学习使用伪相关模式的预测模型时,隐含地假设事情将像过去一样继续。与此同时,由于基于预测结果做出的决定或采取的行动,正在以经常打破这些模式的一种方式积极地改变环境。
从预测到决策
对于决策,需要找到导致结果的特征,并估计如果特征发生变化,结果将如何改变。许多数据科学问题是因果问题,在决策场景中,估计反事实很常见。
- A/B实验:如果改变网站上按钮的颜色,它是否会带来更高的参与度?
- 政策决策:如果采用这种治疗/政策,它将如何导致结果的改变?这会带来更健康的病人/更多的收入吗?
- 政策评估:企业在过去所做的改变或直到现在所知道的,以及结果变化的方式,制定的政策是帮助还是阻碍了试图改变的产品?
- 信用归因:人们购买商品是因为看到了广告吗?他们会购买吗?
什么是因果关系和因果效应?
如果一个行动或治疗(T)导致了一个结果(Y),当且仅当该行动(T)导致了结果(Y)的改变,保持其他一切不变。因果关系意味着通过改变一个因素,可以改变另一个因素。
例如:如果阿司匹林能缓解头痛,当且仅当阿司匹林能使头痛的情况发生变化。
如果市场营销能够带来销售额的增长,当且仅当营销活动能够带来销售额的改变,那么其它一切便能够保持不变。
因果效应是Y随T的单位变化而变化的幅度,而不是相反:
Causal effect = E [Y | do(T=1)] - E [Y | do (T = 0)] (Judea Pearl’s Do-Calculus)
因果推断需要领域知识、假设和专业知识。微软ALICE研究团队开发了DoWhy和EconML开源库,让人们的工作和生活更轻松。任何因果分析的第一步都是提出一个明确的问题:
- 对什么治疗/行动感兴趣?
- 想考虑什么样的结果?
- 哪些混杂因素可能与结果和治疗相关?
因果分析管道:基于深度学习的端到端因果推断(DECI)(微软专利)。
因果发现-因果识别-因果估计-因果验证。
负责任的人工智能仪表板(Azure Machine Learning Studio) :原因分析
该功能基于对模型注册表中拟合模型的解释,如果对相同变量有因果关系理解,则可以探究可能发生的情况。可以观察不同特征的因果效应,并将其与异质效应进行比较,可以观察到不同的群体,以及什么特征或政策对它们最有效。
- DECI:提供了一个端到端因果推断的框架,也可以单独用于发现或估计。
- EconML:提供多种因果关系估计方法。
- DoWhy:提供多种识别和验证方法。
- ShowWhy:在用户友好的图形用户界面(GUI)中为因果决策提供无代码端到端因果分析。
总结
现代机器学习和深度学习算法可以在解释黑盒算法的数据中找到复杂的模式,他们的解释可能意味着机器学习算法从世界上学到了什么。
当将这些学习过的机器学习算法应用到社会中,以制定诸如贷款批准和健康保险政策等政策决策时,它所了解的世界并不一定能很好地反映世界上正在发生的事情。
然而,数据驱动的预测模型是透明的,但不能真正解释。可解释性需要一个因果模型(表二谬论证明了这一点)。因果模型可靠地代表了世界上的一些过程。可解释的人工智能应该能够进行推理,从而做出有效的决策,而不会产生偏见。
原文标题:Causal Analysis in Azure Machine Learning Studio to answer your Causal questions through an end-to-end automated framework,作者:Hari Hara
以上是通过使用因果机器学习做出有效的可操作决策以优化业务KPI的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
