2023年机器学习的十大概念和技术
机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。
本文罗列了2023年机器学习的十大概念和技术。
2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。
2023年机器学习的十大概念和技术:
1. 深度神经网络(DNN)。深度神经网络是自20世纪50年代以来就存在的一种机器学习程序。DNN能够执行图像识别、语音识别和自然语言处理。其由无数隐藏的神经元层组成,每个神经元层学习传入数据的表示,然后使用这些模型来预测传出的数据。
2. 生成对抗网络(GAN)。GAN是生成模型的一种形式,其中两个竞争的神经网络相互训练。一个网络试图创建看起来真实的样本,而另一个网络则确定这些样本是来自真实数据还是生成的数据。GAN在生成图片和视频方面取得了巨大的成功。GAN用于生成类似于现有数据但全新的新数据。我们可以使用GAN从著名艺术家创作的现有杰作中生成新的图像,也被称为当代AI艺术。这些艺术家正在使用生成模型来创建已经被创造出来的杰作。
3. 深度学习。深度学习是一种使用大量处理级别(通常是数百个)学习数据模型的机器学习。这使得计算机能够完成人类认为具有挑战性的工作。深度学习已经被广泛应用,包括计算机视觉、语音识别、自然语言处理、自动化和强化学习。
4. COVID-19中的机器学习和人工智能。自2020年1月以来,人工智能(AI)已被用于识别中国的COVID-19病例。武汉大学的专家们创造了这个人工智能系统。他们开发了一种深度学习算法,能够分析来自电话、短信、社交媒体条目和其他来源的数据。
5. 对话式AI或对话式机器人。这是一种技术,我们与聊天机器人交谈,其在检测语音输入或文本输入后处理语音,然后启用特定的工作或回答。
6. 网络安全中的机器学习。网络安全是确保组织或任何人在互联网或任何网络上免受所有安全相关危险的领域。一个组织要处理大量复杂的数据,需要保护这些数据不受恶意危险的影响。例如,任何人试图侵入计算机或访问数据或未经授权的访问,这就是网络安全的意义所在。
7. 机器学习和物联网。我们在企业中使用的不同物联网程序容易出错,毕竟这是一台机器。如果系统设计不正确或存在缺陷,那么其注定会在某个时刻失败。然而,通过机器学习,维护变得更加容易,因为所有可能导致ID过程失败的因素都可以被提前识别,并且可以为此准备新的行动计划,从而使企业通过降低维护成本来节省大量资金。
8. 增强现实。人工智能的未来是增强现实。许多现实生活中的应用将受益于增强现实(AR)的承诺。
9. 自动化机器学习。传统的机器学习模型创建需要大量的专业知识以及时间来创建和比较数百个模型。既耗时、耗资源,且难度更大。自动化机器学习有助于快速开发生产就绪的机器学习模型。
10. 时间序列预测。预测是任何类型企业的重要组成部分,无论是销售、客户需求、收入还是库存。当与自动化机器学习相结合时,就可以获得建议的高质量时间序列预测。
以上是2023年机器学习的十大概念和技术的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
