目录
1. 角色设定
2. 思路引导
3. 写代码
4. 扩展
首页 科技周边 人工智能 摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问

摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问

Apr 07, 2023 pm 03:06 PM
chatgpt 开发 摔倒识别

哈喽,大家好。

之前给大家分享过摔倒识别、打架识别,今天以摔倒识别为例,我们看看能不能完全交给ChatGPT来做。

让ChatGPT来做这件事,最核心的是如何向ChatGPT提问,把问题一股脑的直接丢给ChatGPT,如:用 Python 写个摔倒检测代码 是不可取的, 而是要像挤牙膏一样,一点一点引导ChatGPT得到准确的答案,从而才能真正让ChatGPT提高我们解决问题的效率。

今天分享的摔倒识别案例,与ChatGPT对话的思路清晰,代码可用度高,按照GPT返回的结果完全可以开发一个摔倒识别的项目了,并且还有一些延伸的话题,如:毕设的改进点。

下面开始正式的分享。

1. 角色设定

向ChatGPT提问首先要给他一个角色设定,在算法领域这叫prompt,有了进入了角色,才能更好地回答问题。所以,我提问的第一句是:

假如你是一名AI工程师,我想识别视频中是否有摔倒行为,有哪些办法

没必要刚上来就让他直接写代码,先问问他有哪些办法或者思路。

我们看看ChatGPT的回答

图片

给出了3个方案,有传统的图像方法,也有深度学习方法。

2. 思路引导

我们当然是对深度学习感兴趣了,所以继续询问关于深度学习的方法

使用深度学习的方法有哪些

ChatGPT回答

图片

从卷积神经网络到卷积循环神经网络说了个遍。

看起来循环神经网络 RNN更简单、靠谱,接下来我的提问是

我需要 循环神经网络 (RNN) 的方法

ChatGPT回答

图片

给出了非常详细的、实操性非常强的步骤,我简单归类一下,大致是两步:

第一步,对视频预处理,用卷积神经网络(如:ResNet)提取视频动作特征(类似 wordembedding) 第二步,用动作特征作为 lstm 模型的输入,训练 lstm 循环神经网络,对动作特征分类,从而识别出摔倒行为

3. 写代码

到目前,ChatGPT 提供给我们的,解决问题的思路非常清晰,并且可执行性非常强。

所以,这时候我们可以让ChatGPT写代码了。

按照我上面划分的步骤,我让他一次性把第一步代码写出来,所以,我的提问是:

写一下视频预处理的代码,并用 pytorch resnet提取视频特征

ChatGPT的回答

好的,下面是通过 Pytorch 的 ResNet 提取视频特征的代码,以及视频预处理的示例代码:

视频预处理:

import cv2
import numpy as np

def preprocess_video(video_path, n_frames=16, resize=(224, 224)):
# 读取视频
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# 强制转换为 RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 图像缩放
frame = cv2.resize(frame, resize)
# 图像增强等操作
# ...
frames.append(frame)
cap.release()
# 取固定帧数 n_frames,超过后从中间开始截取
n_frames = min(len(frames), n_frames)
start = (len(frames) - n_frames) // 2
end = start + n_frames
# 截取帧数后堆叠成四维数组
frames = np.stack(frames[start:end], axis=0)
# 转换为支持 Pytorch 模型的格式 (B, C, T, H, W)
frames = np.transpose(frames, (0, 3, 1, 2))
return frames
提取视频特征:

import torch
import torchvision.models as models

def extract_features(frames):
# 加载 ResNet 模型
resnet = models.resnet50(pretrained=True)
# 去掉最后的全连接层
resnet = torch.nn.Sequential(*list(resnet.children())[:-1])
# 将 ResNet 设置为评估模式
resnet.eval()
# 将预处理后的视频序列转化为 Tensor,并调整为指定的数据类型和范围
frames = torch.from_numpy(frames).float() / 255.0
# 减去 ImageNet 数据集的均值和标准差
normalize = torch.nn.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
frames = normalize(frames)
# 前向预测,输出 2048 维特征向量
with torch.no_grad():
features = resnet(frames)
return features.reshape(-1, 2048)
在上面这两块代码中,preprocess_video() 函数将读取视频,并将其转换为指定大小的图像帧,返回处理后的数据;extract_features() 函数将接受上一步处理后的数据,并将其转化为 Pytorch 的 Tensor,使用训练好的 ResNet 模型对每一帧图像进行特征提取,并返回一个形状为 (B, 2048) 的 Tensor,其中 B 为帧数。
登录后复制

图片太长了,为了大家能更好的感受ChatGPT的回答,我直接把代码文本贴出来了。

定义了两个独立函数,分别完成了第一步中的两小步内容。

代码没有问题,先调用preprocess_video函数对视频预处理,再调用 extract_features卷积操作,就可以将一个向量embedding成一个2048维的向量。

第二步,我拆分成了两小步,先搭建lstm模型,再训练

基于上面产出的结果,用 pytorch lstm搭建视频分类模型

ChatGPT的回答

图片

写一下模型训练的代码

ChatGPT的回答

好的,下面是使用 Pytorch 训练视频分类模型的代码:

import torch
import torch.nn as nn
import torch.optim as optim

# 训练函数
def train(model, criterion, optimizer, dataloader, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 将模型移动到 GPU 或 CPU 上
for epoch in range(num_epochs):
running_loss = 0.0
correct_predictions = 0
total_predictions = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)

optimizer.zero_grad()

with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)

loss.backward()
optimizer.step()

running_loss += loss.item() * inputs.size(0)
correct_predictions += torch.sum(preds == labels.data)
total_predictions += labels.size(0)

epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = correct_predictions.double() / total_predictions

print("Epoch {}: Loss {:.4f} Acc: {:.4f}".format(epoch + 1, epoch_loss, epoch_acc))

# 定义超参数
BATCH_SIZE = 4
NUM_EPOCHS = 20

# 定义数据集,假设已经准备好了训练数据集和测试数据集
train_dataset = ...
test_dataset = ...

# 定义数据加载器
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=BATCH_SIZE, shuffle=False
)

# 定义模型
input_size = 2048
hidden_size = 512
num_layers = 1
num_classes = 2
model = VideoLSTM(input_size, hidden_size, num_layers, num_classes)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())

# 训练模型
train(model, criterion, optimizer, train_dataloader, num_epochs=NUM_EPOCHS)
在代码中,首先定义了模型的超参数,如 BATCH_SIZE 和 NUM_EPOCHS。接着定义了训练数据集和测试数据集,并使用 Pytorch 的 DataLoader 将数据加载为 batch。然后定义了模型、损失函数和优化器。最后调用 train() 函数进行模型训练。

在训练过程中,每个 epoch 循环训练所有的视频帧,计算损失函数,计算准确率,并输出当前 epoch 的平均损失和准确率。训练完成后,可以将模型的参数保存到磁盘上,以便以后使用。
登录后复制

代码的可用性非常高。除了代码串联有一些成本,各个独立模块基本不需要动,开发效率非常高效。

还可以让ChatGPT找一些数据集

图片

还可以让他写一下模型推理的代码

图片

他可以自动帮我们把视频预处理、特征提取和推理三部分都串起来,形成一个完整的项目。

4. 扩展

到这里,我们就完全用ChatGPT把项目做完了。

我们还可以聊一些扩展性的话题,如:

图片

还可以让ChatGPT帮我们想一些能突出学术价值的点

图片

看到这里,说明我的文章对你多少有一丢丢的帮助。不管是否加入星球,我都感谢对大家对我的认可和信任。

以上是摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 Aug 09, 2024 pm 09:37 PM

DALL-E 3 于 2023 年 9 月正式推出,是比其前身大幅改进的型号。它被认为是迄今为止最好的人工智能图像生成器之一,能够创建具有复杂细节的图像。然而,在推出时,它不包括

四款值得推荐的AI辅助编程工具 四款值得推荐的AI辅助编程工具 Apr 22, 2024 pm 05:34 PM

这个AI辅助编程工具在这个AI迅速发展的阶段,挖掘出了一大批好用的AI辅助编程工具。AI辅助编程工具能够提高开发效率、改善代码质量、降低bug率,是现代软件开发过程中的重要助手。今天大姚给大家分享4款AI辅助编程工具(并且都支持C#语言),希望对大家有所帮助。https://github.com/YSGStudyHards/DotNetGuide1.GitHubCopilotGitHubCopilot是一款AI编码助手,可帮助你更快、更省力地编写代码,从而将更多精力集中在问题解决和协作上。Git

手机怎么安装chatgpt 手机怎么安装chatgpt Mar 05, 2024 pm 02:31 PM

安装步骤:1、在ChatGTP官网或手机商店上下载ChatGTP软件;2、打开后在设置界面中,选择语言为中文;3、在对局界面中,选择人机对局并设置中文相谱;4、开始后在聊天窗口中输入指令,即可与软件进行交互。

AI程序员哪家强?探索Devin、通义灵码和SWE-agent的潜力 AI程序员哪家强?探索Devin、通义灵码和SWE-agent的潜力 Apr 07, 2024 am 09:10 AM

2022年3月3日,距世界首个AI程序员Devin诞生不足一个月,普林斯顿大学的NLP团队开发了一个开源AI程序员SWE-agent。它利用GPT-4模型在GitHub存储库中自动解决问题。SWE-agent在SWE-bench测试集上的表现与Devin相似,平均耗时93秒,解决了12.29%的问题。SWE-agent通过与专用终端交互,可以打开、搜索文件内容,使用自动语法检查、编辑特定行,以及编写和执行测试。(注:以上内容为原内容微调,但保留了原文中的关键信息,未超过指定字数限制。)SWE-A

学习如何利用Go语言开发移动应用程序 学习如何利用Go语言开发移动应用程序 Mar 28, 2024 pm 10:00 PM

Go语言开发移动应用程序教程随着移动应用市场的不断蓬勃发展,越来越多的开发者开始探索如何利用Go语言开发移动应用程序。作为一种简洁高效的编程语言,Go语言在移动应用开发中也展现出了强大的潜力。本文将详细介绍如何利用Go语言开发移动应用程序,并附上具体的代码示例,帮助读者快速入门并开始开发自己的移动应用。一、准备工作在开始之前,我们需要准备好开发环境和工具。首

chatgpt国内可以使用吗 chatgpt国内可以使用吗 Mar 05, 2024 pm 03:05 PM

chatgpt在国内可以使用,但不能注册,港澳也不行,用户想要注册的话,可以使用国外的手机号进行注册,注意注册过程中要将网络环境切换成国外ip。

Android开发最适合的Linux发行版是哪个? Android开发最适合的Linux发行版是哪个? Mar 14, 2024 pm 12:30 PM

Android开发是一项繁忙而又令人兴奋的工作,而选择一个适合的Linux发行版来进行开发则显得尤为重要。在众多的Linux发行版中,究竟哪一个最适合Android开发呢?本文将从几个方面来探讨这一问题,并给出具体的代码示例。首先,我们来看一下目前流行的几个Linux发行版:Ubuntu、Fedora、Debian、CentOS等,它们都有各自的优点和特点。

了解VSCode:这款工具到底是用来干什么的? 了解VSCode:这款工具到底是用来干什么的? Mar 25, 2024 pm 03:06 PM

《了解VSCode:这款工具到底是用来干什么的?》作为一个程序员,无论是初学者还是资深开发者,都离不开代码编辑工具的使用。在众多编辑工具中,VisualStudioCode(简称VSCode)作为一款开源、轻量级、强大的代码编辑器备受开发者欢迎。那么,VSCode到底是用来干什么的?本文将深入探讨VSCode的功能和用途,并提供具体的代码示例,以帮助读者

See all articles