目录
探索不同的方法
逐步建立文档问答聊天机器人
前提条件
工作流程
设置
构建索引并保存
查询索引并获得响应
一些高级用法的说明
总结
首页 科技周边 人工智能 深入浅析,一步步用GPT打造你的聊天机器人

深入浅析,一步步用GPT打造你的聊天机器人

Apr 07, 2023 pm 07:41 PM
机器人 gpt llm

与ChatGPT聊天很有趣,而且信息量很大 —— 与它闲聊可以探索一些新的想法。但这些都是比较随意的用例,新奇感很快就会减弱,特别是当人意识到它能产生幻觉的时候。

如何以更高效的方式使用ChatGPT呢?在OpenAI发布GPT3.5系列API后,可以做的事情远不止是闲聊。QA(问答)是企业和个人使用的一个非常有效的用例 —— 用自然语言向机器人询问自己的文件/数据,它可以通过从文件中检索信息并生成回应来快速回答。可以把它用于客户支持、综合用户研究、个人知识管理等等。

向机器人询问与文件相关的问题。使用稳定扩散法生成的图像。

本文将探讨如何根据自己的数据建立问答聊天机器人,包括为什么有些方法行不通,以及如何利用llama-index和GPT API以高效的方式建立一个文档问答聊天机器人的步骤指南。

(如果只想知道如何建立问答聊天机器人,可以直接跳到“逐步建立文档问答聊天机器人”部分)

探索不同的方法

当ChatGPT问世时,可以想到把它作为自己工作的一个助手,从而节省自己的时间和精力等。

首先想到的是用自己的数据对GPT模型进行微调来实现这个目标。但是,微调需要花费相当多的钱,而且需要一个有实例的大数据集。也不可能在文件有变化时每次都进行微调。更为关键的一点是,微调根本不可能让模型“知道”文档中的所有信息,而是要教给模型一种新的技能。因此,对于(多)文档质量保证来说,微调并不是一个好办法。

第二个方法是通过在提示中提供上下文来进行提示工程。例如,可以在实际问题之前附加原始文档内容,而不是直接问问题。但是GPT模型的注意力是有限的 —— 它只能接受提示中的几千字(大约4000个标记或3000字)。只要有成千上万的客户反馈邮件和数百个产品文档,就不可能给它提示中的所有背景。如果向API传递一个长的上下文,也是很昂贵的,因为定价是基于使用的代币的数量。

I will ask you questions based on the following context:
— Start of Context —

YOUR DOCUMENT CONTENT

— End of Context—
My question is: “What features do users want to see in the app?”
登录后复制

由于提示符对输入标记的数量有限制,想出了这样一个主意来解决问题:首先使用一种算法来搜索文档并挑选出相关的摘录,然后只将这些相关的语境与问题一起传递给GPT模型。在过程中需要使用一个简单、便捷的gpt-index​(现在改名为LlamaIndex)的库。

图片

从文件中提取相关部分,然后将其反馈给提示。

在下一节中,将给出一个使用LlamaIndex和GPT在自己的数据上建立一个问答聊天机器人的分步教程。

逐步建立文档问答聊天机器人

在这一节中,将用LlamaIndex和GPT(text-davinci-003)在现有文档的基础上建立一个问答聊天机器人,这样就可以用自然语言提出关于文档的问题,并从聊天机器人那里得到答案。

前提条件

在开始本教程之前,需要做一些准备:

  • OpenAI API密钥,可以在https://platform.openai.com/account/api-keys找到。
  • 一个文件数据库。LlamaIndex支持许多不同的数据源,如Notion、Google Docs、Asana等。在本文中将只使用一个简单的文本文件进行演示。
  • 一个本地的Python环境或一个在线的Google Colab笔记本。

工作流程

工作流程很简单,只需要几个步骤:

  • 1.用LlamaIndex为你的文档数据建立一个索引。
  • 2.用自然语言查询该索引。
  • 3.LlamaIndex将检索相关部分并将其传递给GPT提示。
  • 4.向GPT询问相关的上下文并构建一个回应。

LlamaIndex所做的是将原始文档数据转换成一个矢量的索引,这对查询来说是非常有效的。它将使用这个索引,根据查询和数据的相似性,找到最相关的部分。然后,它将把检索到的内容插入到它将发送给GPT的提示中,这样GPT就有了回答问题的背景。

设置

首先需要安装库。只需在终端或谷歌Colab笔记本上运行以下命令。这些命令将同时安装LlamaIndex和OpenAI。

!pip install llama-index
!pip install openai
登录后复制

接下来将在python中导入这些库,并在一个新的.py文件中设置OpenAI API密钥。

# 导入必要的库
from llama_index import GPTSimpleVectorIndex, Document, SimpleDirectoryReader
import os

os.environ['OPENAI_API_KEY'] = 'sk-YOUR-API-KEY'
登录后复制

构建索引并保存

在安装了所需的库并将其导入后,将需要构建一个文档的索引。

为了加载文档,可以使用LllamaIndex​提供的SimpleDirectoryReader方法,或者可以从字符串中加载它。

# 从一个目录中加载
documents = SimpleDirectoryReader('your_directory').load_data()

# 从字符串中加载,假设将数据保存为字符串text1,text2,...
text_list = [text1, text2, ...]
documents = [Document(t) for t in text_list]
登录后复制

LlamaIndex还提供各种数据连接器,包括Notion、Asana、Google Drive、Obsidian等。可以在https://llamahub.ai/找到可用的数据连接器。

加载完文档后,就可以用以下方法简单地构建索引了:

# 构建一个简单的向量索引
index = GPTSimpleVectorIndex(documents)
登录后复制

如果想保存索引并加载它以便将来使用,可以使用以下方法:

# 将索引保存在`index.json`文件中
index.save_to_disk('index.json')
# 从保存的`index.json`文件中加载索引
index = GPTSimpleVectorIndex.load_from_disk('index.json')
登录后复制

查询索引并获得响应

查询索引很简单:

# 查询索引
response = index.query("What features do users want to see in the app?")
print(response)
登录后复制

图片

一个回应的例子。

然后就可以得到答案了。在幕后,LlamaIndex将接收提示,在索引中搜索相关块,并将提示和相关块传递给GPT。

一些高级用法的说明

上面的步骤只是展示了使用LlamaIndex和GPT回答问题的一个非常简单的入门用法。但可以做得比这更多。事实上,可以配置LlamaIndex来使用不同的大型语言模型(LLM),为不同的任务使用不同类型的索引,用一个新的索引来更新现有的索引,等等。如果有兴趣,可以在https://gpt-index.readthedocs.io/en/latest/index.html,阅读他们的文档。

总结

本文中展示了如何结合使用GPT和LlamaIndex来构建一个文档问答聊天机器人。虽然GPT(和其他LLM)本身就很强大,但如果把它与其他工具、数据或流程结合起来,它的力量也会被大大增强。

以上是深入浅析,一步步用GPT打造你的聊天机器人的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

本地使用Groq Llama 3 70B的逐步指南 本地使用Groq Llama 3 70B的逐步指南 Jun 10, 2024 am 09:16 AM

译者|布加迪审校|重楼本文介绍了如何使用GroqLPU推理引擎在JanAI和VSCode中生成超快速响应。每个人都致力于构建更好的大语言模型(LLM),例如Groq专注于AI的基础设施方面。这些大模型的快速响应是确保这些大模型更快捷地响应的关键。本教程将介绍GroqLPU解析引擎以及如何在笔记本电脑上使用API和JanAI本地访问它。本文还将把它整合到VSCode中,以帮助我们生成代码、重构代码、输入文档并生成测试单元。本文将免费创建我们自己的人工智能编程助手。GroqLPU推理引擎简介Groq

加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化 加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化 Apr 23, 2024 pm 03:01 PM

LeanCopilot,让陶哲轩等众多数学家赞不绝口的这个形式化数学工具,又有超强进化了?就在刚刚,加州理工教授AnimaAnandkumar宣布,团队发布了LeanCopilot论文的扩展版本,并且更新了代码库。图片论文地址:https://arxiv.org/pdf/2404.12534.pdf最新实验表明,这个Copilot工具,可以自动化80%以上的数学证明步骤了!这个纪录,比以前的基线aesop还要好2.3倍。并且,和以前一样,它在MIT许可下是开源的。图片他是一位华人小哥宋沛洋,他是

Plaud 推出 NotePin AI 可穿戴录音机,售价 169 美元 Plaud 推出 NotePin AI 可穿戴录音机,售价 169 美元 Aug 29, 2024 pm 02:37 PM

Plaud Note AI 录音机(亚马逊有售,售价 159 美元)背后的公司 Plaud 宣布推出一款新产品。该设备被称为 NotePin,被描述为人工智能记忆胶囊,与 Humane AI Pin 一样,它是可穿戴的。 NotePin 是

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

第二代Ameca来了!和观众对答如流,面部表情更逼真,会说几十种语言 第二代Ameca来了!和观众对答如流,面部表情更逼真,会说几十种语言 Mar 04, 2024 am 09:10 AM

人形机器人Ameca升级第二代了!最近,在世界移动通信大会MWC2024上,世界上最先进机器人Ameca又现身了。会场周围,Ameca引来一大波观众。得到GPT-4加持后,Ameca能够对各种问题做出实时反应。「来一段舞蹈」。当被问及是否有情感时,Ameca用一系列的面部表情做出回应,看起来非常逼真。就在前几天,Ameca背后的英国机器人公司EngineeredArts刚刚演示了团队最新的开发成果。视频中,机器人Ameca具备了视觉能力,能看到并描述房间整个情况、描述具体物体。最厉害的是,她还能

知识图谱检索增强的GraphRAG(基于Neo4j代码实现) 知识图谱检索增强的GraphRAG(基于Neo4j代码实现) Jun 12, 2024 am 10:32 AM

图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库则处理这类结构化信息时则显得力不从心,它们更专注于处理高维向量表示的非结构化数据。在RAG应用中,结合结构化化的图数据和非结构化的文本向量搜索,可以让我们同时享受两者的优势,这也是本文将要探讨的内容。构

可视化FAISS矢量空间并调整RAG参数提高结果精度 可视化FAISS矢量空间并调整RAG参数提高结果精度 Mar 01, 2024 pm 09:16 PM

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

AI如何使机器人更具自主性和适应性? AI如何使机器人更具自主性和适应性? Jun 03, 2024 pm 07:18 PM

在工业自动化技术领域,最近有两个热点很难被忽视:人工智能(AI)和英伟达(Nvidia)。不要改变原内容的意思,微调内容,重写内容,不要续写:“不仅如此,这两者密切相关,因为英伟达在不仅仅局限于其最开始的图形处理单元(GPU),正在将其GPU技术扩展到数字孪生领域,同时紧密连接着新兴的AI技术。”最近,英伟达与众多工业企业达成了合作,包括领先的工业自动化企业,如Aveva、罗克韦尔自动化、西门子和施耐德电气,以及泰瑞达机器人及其MiR和优傲机器人公司。Recently,Nvidiahascoll

See all articles