GPT-4的早期实验,通用人工智能的火花
最近,微软发布了一个长达154页的论文名称为《通用人工智能的火花,GPT-4的早期实验》。
文章的主要观点是虽然GPT-4还不完整,但是已经可以被视为,一个通用人工智能的早期版本。
由于全文将近7万字,本篇将论文的内容做了一下精炼和解读,有兴趣可阅读原文 https://arxiv.org/pdf/2303.12712.pdf
来自微软的科学家们认为,GPT-4的智能水平已经非常接近于人类的水平,而且远超之前的诸如先前ChatGPT用的GPT-3.5这样的模型,可以将GPT-4视为通用人工智能系统,也就是AGI的早期,但是并不完整的版本。
1994年,52名心理学家给出了智能一个定义:智能是一种通用的心理能力,包括推理、计划、解决问题、抽象思考,理解复杂思想、快速学习,以及从经验中学习的能力等等。
微软的这篇论文中的AGI,指代的就是在对智能的这个定义标准下,达到或者超过人类水平的系统。
那么如何对GPT-4进行测试,从而证明这一点呢。有不少大语言模型的评测基准。比如说Super natural instructions以及big bench。GPT-4是否拥有智能的一个关键方面,是它的通用性,就是能够看似理解和链接任何的主题和领域,这就超出了经典的自然语言处理的任务范畴。为了突破这个限制,研究团队提出了一种更接近于传统心理学,而不是机器学习的测评方法来测试GPT-4,就是利用人类的创造力和好奇心,来重新生成各种新颖而且困难的任务和问题让GPT-4作答。
研究团队将不同的问题划分为了4大类的能力,分别是自然语言,编程和数学,计划和解决问题,以及人类心理和常识。
接下来通过一些精彩的示例,来说明GPT-4在各个方面的能力。
示例1: 跨学科组合的能力
这些任务往往都需要调取并且融合多学科多领域的知识或者技能来生成文本或者代码。比如说下面这个例子,图2.2:GPT-4和ChatGPT(GPT-3.5)在跨学科任务上的比较:用莎士比亚的风格来证明存在无穷多的素数。
GPT-4和ChatGPT(GPT-3.5)都对这个问题进行了回答,让GPT-4评价下哪个回答更好,也就是说,让GPT-4评价自己(GPT-4)和ChatGPT(GPT-3.5)的回答:
我认为两个学生都用莎士比亚风格的方式写出了有无限多个质数的证明,并且都使用了证明的基本思路:假设只有有限个质数,然后构造一个更大的质数,从而与该假设相矛盾。他们还使用了适当的语言和词汇来匹配莎士比亚的风格。但是,我认为GPT-4更好地利用了押韵和韵律来使对话更有诗意和戏剧性。ChatGPT(GPT-3.5)没有使用押韵,而且韵律不连贯。我还认为GPT-4在创造两个对立的派别方面表现更好,一个派别自信,另一个派别怀疑,而学生B则使用了罗密欧和朱丽叶,两者都意见相同、相爱。因此,我会给GPT-4一个更高的评分,给予A,而ChatGPT(GPT-3.5)则是B。
示例2: 编程能力
在测试中,为了避免GPT-4在预训练的时候,见过相同或者类似的代码,研究团队特意采用了GPT-4预训练之后发布的100个新的LeetCode试题作为测试的基准。图中的pass@K就代表了k次尝试后成功的概率。我们可以看到当k等于5时,GPT-4已经全面超越了人类的表现。(其实,k=1,在中等和困难的编程题目中就已经超越了人类的表现)
事实证明GPT-4是一位编程大师,AGI模型可能会彻底的改变我们未来编程的方式。
论文非常长,示例远不止上面提到的,我这里只挑选了两个,感兴趣的可以阅读论文原文。
论文最后指出,在面向更加通用的人工智能的路上,大语言模型还需要在以下几个方面进一步的提升。比如说幻觉和置信度,长期记忆,持续学习、个性化、规划以及概念发散,也就是所谓的灵光闪现、透明度、可解释性、一致性、认知谬误、非理性思维以及对提示响应的鲁棒性等等。
以上是GPT-4的早期实验,通用人工智能的火花的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

关于Llama3,又有测试结果新鲜出炉——大模型评测社区LMSYS发布了一份大模型排行榜单,Llama3位列第五,英文单项与GPT-4并列第一。图片不同于其他Benchmark,这份榜单的依据是模型一对一battle,由全网测评者自行命题并打分。最终,Llama3取得了榜单中的第五名,排在前面的是GPT-4的三个不同版本,以及Claude3超大杯Opus。而在英文单项榜单中,Llama3反超了Claude,与GPT-4打成了平手。对于这一结果,Meta的首席科学家LeCun十分高兴,转发了推文并

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
