语言学家重出江湖!从「发音」开始学:这次AI模型要自己教自己
试图让计算机理解人类的语言一直是人工智能领域迈不过的难关。
早期的自然语言处理模型通常采用人工设计特征,需要专门的语言学家手工编写pattern,但最终效果却并不理想,甚至AI研究一度陷入寒冬。
每当我开除一个语言学家,语音识别系统就更准确了。
Every time I fire a linguist, the performance of the speech recognizer goes up.
——Frederick Jelinek
有了统计模型、大规模预训练模型以后,特征抽取是不用做了,但仍然需要对指定任务进行数据标注,而且最关键的问题在于:训练得到的模型还是不懂人类的语言。
所以,我们是不是该从语言最初的形态开始重新研究:人类到底是怎么获得语言能力的?
最近来自康奈尔大学、麻省理工学院和麦吉尔大学的研究人员在Nature Communications上发表了一篇论文,提出一个算法合成模型的框架,在人类语言的最基础部分,即词法音位学(morpho-phonology)上开始教AI学习语言,直接从声音中构建语言的词法。
论文链接:https://www.nature.com/articles/s41467-022-32012-w
词法音位学是语言学分支之一,主要关注语素(即最小的意义单位)在组合成词时发生的音变,试图给出一系列规则,以预判语言中音素的规律变声。
比如说英语中的复数语素写作-s或是-es,但读音却有三种[s]、[z] 及 [әz],比如cats的发音为/kæts/, dogs的发音为/dagz/, horses的发音为/hɔrsәz/。
人类在学习复数发音转换时,首先根据词法学(morphology),意识到复数后缀实际上是/z/;然后根据音位学(phonlogy),将后缀基于词干中的声韵,如清辅音等转换成/s/或/әz/
其他语言也有同样的音位词法规律,研究人员从58种语言的音位教科书上收集得到了70个数据集,每个数据集只包含几十到几百个单词,并且只包含少数语法现象,实验表明在自然语言中寻找语法结构的方法也可以模拟婴儿学习语言的过程。
通过对这些语言数据集执行分层贝叶斯推理(hierarchical Bayesian inference),研究人员发现该模型仅从一个或几个样例中就可以获取新的词法音位规则,并且能够提取出通用的跨语言模式,并以紧凑的、人类可理解的形式表达出来。
让AI模型做「语言学家」
人类的智能主要体现在建立认知世界理论的能力,比如自然语言形成后,语言学家总结了一套规则来帮助儿童更快速地学习特定语言,而当下的AI模型却无法总结规则,形成一套其他人可理解的理论框架。
在建立模型之前要解决一个核心问题:「如何描述一个词」,比如说一个词的学习过程包括了解词的概念、意图、用法、发音以及含义等。
在构建词表时,研究人员把每个词表示为一个对,例如open表示为εn/, [stem: OPEN]>, 过去式表示为/, [tense: PAST]>,组合得到的opened表示为εnd/, [stem: OPEN, [tense: PAST]]>
有了数据集以后,研究人员建立了一个模型,通过最大后验概率推理来解释在一组pair集合上生成语法规则,对词的变化进行解释。
在声音的表示上,音素(原子音)被表示为二元特征的向量,比如/m/,/n/,是鼻音,然后基于该特征空间定义语音规则。
研究人员采用经典的规则表述方式,即情境相关记忆(context-dependent),有时也称之为SPE-style规则,其广泛应用于英语的音型(Sound Pattern of English)表示。
每个规则的写法是
(focus)→(structural_change)/(left_trigger)_(right_trigger),意思是只要左/右触发环境紧靠focus的左/右,焦点音素就会根据结构变化进行转换。
触发环境指定了特征的连接(表征音素的集合),例如在英语中,只要左边的音素是[-sonorant],在词末的发音就会从/d/变成/t/,写成规则就是[-sonorant] → [-voice]/[-voice -sonorant]_#,比如说walked应用这一规则后,发音就从/wɔkd/转化为/wɔkt/。
当这种规则被限制为不能循环应用于自己的输出时,规则和词法学就对应于双向有理函数(2-way rational functions),又对应于有穷状态转换器(finite-state transductions)。有人认为有穷状态转换器的空间有足够的表现力来涵盖形态语音学中已知的经验现象,并代表了对语音学理论实际使用的描述能力的限制。
为了学习这种语法,研究人员采用了贝叶斯程序学习(Bayesian Program Learning, BPL)的方法。将每个语法规则T建模为一种编程语言中的程序,这种语言捕捉了问题空间的特定领域的约束。所有语言共同的语言结构被称为通用语法(universal grammar)。该方法可以被看作是语言学中一个长期存在的方法的现代实例,并采用人类可理解的生成性代表来正式确定通用语法。
在定义好BPL需要解决的问题后,在所有程序的搜索空间都是无穷大,不给出如何解决这个问题的任何指导方向,且缺乏像梯度下降或马尔科夫链蒙特卡洛这样局部优化算法所利用的局部平稳性的情况下,研究人员采用了一种基于约束的程序合成的策略,将优化问题转化为组合约束满足问题,并使用布尔可满足性(SAT)求解器来解决。
这些求解器实现了详尽但相对有效地搜索,并保证在有足够时间的情况下,会找到一个最优解。使用Sketch程序合成器可以解决与某些数据一致的最小的语法,但必须符合语法大小的上限。
但在实践中,SAT求解器所采用的穷举搜索技术无法扩展到解释大型语料库所需的海量规则。
为了将求解器扩展到大型和复杂的理论,研究人员从儿童获得语言能力和科学家建立理论的一个基本特征中得到了启发。
儿童并不是一蹴而就地学习语言,而是通过语言发展的中间阶段,逐步丰富他们对语法和词汇的掌握。同样地,一个复杂的科学理论可能从一个简单的概念内核开始,然后逐渐发展到涵盖越来越多的语言现象。
基于上述想法,研究人员又设计了一种程序合成算法,从一个小程序开始,然后反复使用SAT求解器来寻找小的修改点,使其能够解释越来越多的数据。具体来说,就是找到一个对当前理论的反例,然后使用求解器详尽地探索可以容纳这个反例的理论的所有小修改的空间。
但这种启发式的方法缺乏SAT求解的完整性保证:尽管重复调用一个完整的、精确的SAT求解器,但它并不能保证找到一个最优解,不过每一次重复调用都比直接对整个数据进行优化要难得多。因为约束每个新的理论在理论空间中接近其前一个理论会导致约束满足问题的多项式缩小,从而使搜索时间呈指数级增长,而SAT求解器在最坏的情况下是以指数级增长的。
在实验评估阶段,研究人员从语言学教科书中搜集了70个问题,每个问题都要求对一些自然语言中的一些形式的理论进行综合分析。这些问题的难度范围很广,涵盖了多种多样的自然语言现象。
自然语言也多种多样,包括音调语言,例如,在Kerewe语(坦桑尼亚的一种班图语)中,to count是/kubala/,但to count it是/kukíbála/,其中重音标记高音调。
也有元音和谐(vowel harmony)的语言,例如土耳其有/el/,/t∫an/,分别表示手,钟,以及/el-ler/,/t∫an-lar/,分别表示手和钟的复数;还有许多其他语言现象,如同化和外延式。
在评估上,首先衡量该模型发现正确的词表的能力。与ground-truth词表相比,该模型在60%的基准中发现了与问题的全部词库正确匹配的语法,并在79%的问题中正确解释了大部分的词库。
通常情况下,每个问题的正确词库比正确的规则更明确,任何从正确的词库中产生完整数据的规则必须与模型可能提出的任何基础规则具有观察上的等效性。因此,与基础真理词库的一致性应该作为一个指标来衡量同步化的规则在数据上是否有正确的行为,该评估与规则的质量相关。
为了测试这个假设,研究人员随机抽取了15个问题,并与一位专业语言学家协商,对发现的规则进行评分。同时测量召回率(正确恢复的实际语音规则的比例)和精确度(恢复的规则中实际出现的比例)。在精度和召回率的指标下,可以发现规则的准确性与词库的准确性呈正相关。
当系统得到所有词库的正确性时,它很少引入无关的规则(高精度),而且几乎总是得到所有正确的规则(高召回率)。
以上是语言学家重出江湖!从「发音」开始学:这次AI模型要自己教自己的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

近日,以“AI引领时代,算力驱动未来”为主题的“临港新片区智算大会”举行。会上,新片区智算产业联盟正式成立,商汤科技作为算力提供企业成为联盟一员,同时商汤科技被授予“新片区智算产业链链主”企业。作为临港算力生态的积极参与者,商汤目前已建设了亚洲目前最大的智能计算平台之一——商汤AIDC,可以输出5000Petaflops的总算力,可支持20个千亿参数量的超大模型同时训练。以AIDC为底座、前瞻打造的商汤大装置SenseCore,致力于打造高效率、低成本、规模化的下一代AI基础设施与服务,赋能人工

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

AI视频模型Sora爆火之后,Meta、谷歌等大厂纷纷下场做研究,追赶OpenAI的步伐。最近,来自谷歌团队的研究人员提出了一种通用视频编码器——VideoPrism。它能够通过单一冻结模型,处理各种视频理解任务。图片论文地址:https://arxiv.org/pdf/2402.13217.pdf比如,VideoPrism能够将下面视频中吹蜡烛的人分类、定位出来。图片视频-文本检索,根据文本内容,可以检索出视频中相应的内容。图片再比如,描述下面视频——一个小女孩正在玩积木。还可以进行QA问答。

在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP。这两个模型都是多模态模型,以某种方式连接文本和图像。CLIP的全称是对比语言-图像预训练(ContrastiveLanguage-ImagePre-training),它是一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为目前火热的StableDiffusion并不是单一模型,而是由多个模型组成。其中一个关键组成部分是文本编码器,用于对用户的文本输入进行编码,而这个文本编码器就是CLIP模型中的文本编码器CL

将数据集分解为训练集,可以帮助我们了解模型,这对于模型如何推广到新的看不见数据非常重要。 如果模型过度拟合可能无法很好地概括新的看不见的数据。因此也无法做出良好的预测。拥有适当的验证策略是成功创建良好预测,使用AI模型的业务价值的第一步,本文中就整理出一些常见的数据拆分策略。简单的训练、测试拆分将数据集分为训练和验证2个部分,并以80%的训练和20%的验证。 可以使用Scikit的随机采样来执行此操作。首先需要固定随机种子,否则无法比较获得相同的数据拆分,在调试时无法获得结果的复现。 如果数据集

IT之家10月13日消息,《Cell》的姐妹期刊《Joule》本周出版了一篇名为《持续成长的人工智慧能源足迹(Thegrowingenergyfootprintofartificialintelligence)》论文。通过查询,我们了解到这篇论文是由科研机构Digiconomist的创始人AlexDeVries发表的。他声称未来人工智能的推理性能可能会消耗大量的电力,预计到2027年,人工智能的用电量可能会相当于荷兰一年的电力消耗量AlexDeVries表示,外界一向认为训练一个AI模型“AI最

使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑战包括:训练时间长:训练过程可能需要数周甚至数月才能完成,具体取决于模型的复杂性和数据集的大小。内存限制:大型 DNN 可能需要大量内存来存储训练期间的所有模型参数、梯度和中间激活。 这可能会导致内存不足错误并限制可在单台机器上训练的
