目录
开篇
误诊问题的案例
那么,现在怎么办?雇用更多的机器学习工程师?
如何从人工智能中获得最大价值
译者介绍
首页 科技周边 人工智能 MLOps:企业是否在重复同样的 DIY 错误?

MLOps:企业是否在重复同样的 DIY 错误?

Apr 08, 2023 pm 02:11 PM
人工智能 云计算 机器学习

​译者 | 崔皓

审校 | 孙淑娟

开篇

MLOps:企业是否在重复同样的 DIY 错误?

一般而言,企业不会主动构建自有的云计算基础设施是有原因的。过去十年,IT 基础架构团队试图构建自己的私有云,因为他们认为与公共云相比,私有云会以性价比更高的方式支撑他们的业务。但事与愿违,最终花费在私有云上的的时间和成本都超过了预期,建成私有云以后反而需要更多的资源来对其进行维护,并且在安全和扩展方面都比公共云略逊一筹。这导致那些自建私有云的企业最终没有更多的资源投资于核心业务,而是将大量的时间和人员投入到无法扩展业务需求的基础设施上。 

现在,许多企业通过各种开源工具(如 Apache Spark)生成解决方案,但对于 MLOps 的大多数行为都需要进行重复地手动操作。

这会导致模型部署需要数周甚至数月的时间、低效的运行时间(通过计算和所需时间运行的推理来衡量),同时还缺乏对模型测试和监控的观察。并且,所用方法过于定制化,无法为企业的不同部门的多个用例提供可扩展、可复用的业务流程。

误诊问题的案例

此外,通过与业务线负责人、首席数据分析官的对话得出这样的结论,虽然组织雇用了很多的数据科学家,但并没有看到任何回报。随着研究的深入,他们会不断提出各种问题,通过这些问题去识别人工智能面临的困难和障碍。他们很快意识到关键问题在“最后一英里”——部署模型并应用于实时数据,有效地执行它们,这样一来才能使收益大于成本,从而更好地衡量其性能。

为了解决业务问题和制定业务决策,数据科学家将数据转化为模型。这一过程需要两类技能的支持,其一是,构建出色模型所需的专业知识和技能;其二是,使用代码在现实世界中推动模型,同时监控和更新模型的技能。然而这两类技能却完全不同。

正因为这种差异就有了ML 工程师的用武之地。ML 工程师负责将工具和框架进行集成,以确保数据、管道和基础设施协同工作,在此前提下大规模生产 ML 模型。 

那么,现在怎么办?雇用更多的机器学习工程师?

即使拥有最好的 ML 工程师,企业在扩展 AI 时仍面临两个主要问题:

  • 无法快速雇用 ML 工程师:对 ML 工程师的需求变得非常强烈,ML 工程师的职位空缺增长速度比 IT 服务增长的速度快了 30 倍。有时需要等待数月甚至数年来填补岗位空缺,由此MLOps 团队需要找到一种高效的方式支持更多的 ML 模型和用例,而无需通过增加 ML 工程师的人数来满足对ML应用的需求。但这一措施又会带来了第二个瓶颈……
  • 无论在何处以及如何构建模型,都缺乏部署模型的可重复、可扩展的最佳实践:现代企业数据生态系统的现状是,不同的业务部门根据数据和技术的要求会使用不同的数据平台(例如,产品团队可能需要支持流数据,而财务需要为非技术用户提供简单的查询界面)。此外,数据科学还需要将应用分散到各个业务部门而不是集中应用。换句话说,不同的数据科学团队中针对他们关注的用例(领域)都有一套特有的模型训练框架,这意味着一刀切的训练框架针对整个企业(包含多个部门/领域)而言是无法成立的。 

如何从人工智能中获得最大价值

为了提高自动化能力;为了提供大规模的用户个性化体验;为了兑现更准确、更精细、可预测的用户承诺,企业已经向人工智能投入了数十亿美元。但到目前为止,人工智能的承诺和结果之间存在巨大差距,只有大约 10%的人工智能投资产生了可观的投资回报率。

最后,为了解决 MLOps 问题,首席数据分析官需要围绕业务核心的数据科学构建自己的能力,同时也要投资其他的与 MLOps自动化相关的技术。这是常见的“构建与购买”困境,不仅从运营的角度(成本收益)去考量,更多地需要考虑人工智能投资在整个企业中渗透的速度和效率,以及是否通过更好的方式产生新的收入产品和客户群,或通过提高自动化程度和减少浪费来削减成本。 

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。曾任惠普技术专家。乐于分享,撰写了很多热门技术文章,阅读量超过60万。《分布式架构原理与实践》作者。

原文标题:​​MLOps | Is the Enterprise Repeating the Same DIY Mis​​takes?​

以上是MLOps:企业是否在重复同样的 DIY 错误?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

云计算巨头掀起法律战:亚马逊状告诺基亚专利侵权 云计算巨头掀起法律战:亚马逊状告诺基亚专利侵权 Jul 31, 2024 pm 12:47 PM

本站7月31日消息,科技巨头亚马逊于周二在美国特拉华州联邦法院起诉了芬兰电信公司诺基亚,指控其侵犯了亚马逊十几项与云计算技术相关的专利。1.亚马逊在诉讼中表示,诺基亚滥用了亚马逊云计算服务(AWS)的相关技术,包括云计算基础设施、安全和性能方面的技术,来加强其自身的云服务产品。诉状称,亚马逊于2006年推出了AWS,其开创性的云计算技术早在2000年代初期就开始研发。“亚马逊是云计算领域的先驱,现在诺基亚却在未经许可的情况下使用亚马逊的专利云计算创新成果,”诉状中写道。亚马逊要求法院发布禁令,阻

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles