在表格数据上,为什么基于树的模型仍然优于深度学习?
深度学习在图像、语言甚至音频等领域取得了巨大的进步。然而,在处理表格数据上,深度学习却表现一般。由于表格数据具有特征不均匀、样本量小、极值较大等特点,因此很难找到相应的不变量。
基于树的模型不可微,不能与深度学习模块联合训练,因此创建特定于表格的深度学习架构是一个非常活跃的研究领域。许多研究都声称可以击败或媲美基于树的模型,但他们的研究遭到很多质疑。
事实上,对表格数据的学习缺乏既定基准,这样一来研究人员在评估他们的方法时就有很多自由度。此外,与其他机器学习子域中的基准相比,大多数在线可用的表格数据集都很小,这使得评估更加困难。
为了缓解这些担忧,来自法国国家信息与自动化研究所、索邦大学等机构的研究者提出了一个表格数据基准,其能够评估最新的深度学习模型,并表明基于树的模型在中型表格数据集上仍然是 SOTA。
对于这一结论,文中给出了确凿的证据,在表格数据上,使用基于树的方法比深度学习(甚至是现代架构)更容易实现良好的预测,研究者并探明了其中的原因。
论文地址:https://hal.archives-ouvertes.fr/hal-03723551/document值得一提的是,论文作者之一是 Gaël Varoquaux ,他是 Scikit-learn 计划的领导者之一。目前该项目在 GitHub 上已成为最流行的机器学习库之一。而由 Gaël Varoquaux 参与的文章《Scikit-learn: Machine learning in Python》,引用量达 58949。
本文贡献可总结为:
该研究为表格数据创建了一个新的基准(选取了 45 个开放数据集),并通过 OpenML 共享这些数据集,这使得它们易于使用。
该研究在表格数据的多种设置下比较了深度学习模型和基于树的模型,并考虑了选择超参数的成本。该研究还分享了随机搜索的原始结果,这将使研究人员能够廉价地测试新算法以获得固定的超参数优化预算。
在表格数据上,基于树的模型仍然优于深度学习方法
新基准参考 45 个表格数据集,选择基准如下 :
- 异构列,列应该对应不同性质的特征,从而排除图像或信号数据集。
- 维度低,数据集 d/n 比率低于 1/10。
- 无效数据集,删除可用信息很少的数据集。
- I.I.D.(独立同分布)数据,移除类似流的数据集或时间序列。
- 真实世界数据,删除人工数据集,但保留一些模拟数据集。
- 数据集不能太小,删除特征太少(
- 删除过于简单的数据集。
- 删除扑克和国际象棋等游戏的数据集,因为这些数据集目标都是确定性的。
在基于树的模型中,研究者选择了 3 种 SOTA 模型:Scikit Learn 的 RandomForest,GradientBoostingTrees (GBTs) , XGBoost 。该研究对深度模型进行了以下基准测试:MLP、Resnet 、FT Transformer、SAINT 。图 1 和图 2 给出了不同类型数据集的基准测试结果
实证调查:为什么基于树的模型在表格数据上仍然优于深度学习
归纳偏差。基于树的模型在各种超参数选择中击败了神经网络。事实上,处理表格数据的最佳方法有两个共有属性:它们是集成方法、bagging(随机森林)或 boosting(XGBoost、GBT),而这些方法中使用的弱学习器是决策树。
发现 1:神经网络(NN)倾向于过度平滑的解决方案
如图 3 所示,对于较小的尺度,平滑训练集上的目标函数会显着降低基于树的模型的准确率,但几乎不会影响 NN。这些结果表明,数据集中的目标函数并不平滑,与基于树的模型相比,NN 难以适应这些不规则函数。这与 Rahaman 等人的发现一致,他们发现 NN 偏向于低频函数。基于决策树的模型学习分段(piece-wise)常函数,没有这样的偏置。
发现 2:非信息特征更能影响类似 MLP 的 NN
表格数据集包含许多非信息( uninformative)特征,对于每个数据集,该研究根据特征的重要性会选择丢弃一定比例的特征(通常按随机森林排序)。从图 4 可以看出,去除一半以上的特征对 GBT 的分类准确率影响不大。
图 5 可以看到移除非信息特征 (5a) 减少了 MLP (Resnet) 与其他模型(FT Transformers 和基于树的模型)之间的性能差距 ,而添加非信息特征会扩大差距,这表明 MLP 对非信息特征的鲁棒性较差。在图 5a 中,当研究者移除更大比例的特征时,相应的也会删除有用信息特征。图 5b 表明,去除这些特征所带来的准确率下降可以通过去除非信息特征来补偿,与其他模型相比,这对 MLP 更有帮助(同时,该研究还删除了冗余特性,也不会影响模型性能)。
发现 3:通过旋转,数据是非不变的
与其他模型相比,为什么 MLP 更容易受到无信息特征的影响?其中一个答案是,MLP 是旋转不变的:当对训练集和测试集特征应用旋转时,在训练集上学习 MLP 并在测试集上进行评估,这一过程是不变的。事实上,任何旋转不变的学习过程都具有最坏情况下的样本复杂度,该复杂度至少在不相关特征的数量上呈线性增长。直观地说,为了去除无用特征,旋转不变算法必须首先找到特征的原始方向,然后选择信息最少的特征。
图 6a 显示了当对数据集进行随机旋转时的测试准确率变化,证实只有 Resnets 是旋转不变的。值得注意的是,随机旋转颠倒了性能顺序:结果是 NN 在基于树的模型之上,Resnets 在 FT Transformer 之上,这表明旋转不变性是不可取的。事实上,表格数据通常具有单独含义,例如年龄、体重等。图 6b 中显示:删除每个数据集中最不重要的一半特征(在旋转之前),会降低除 Resnets 之外的所有模型的性能,但与没有删除特征使用所有特征时相比,相比较而言,下降的幅度较小。
以上是在表格数据上,为什么基于树的模型仍然优于深度学习?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA
