目录
​1、线性回归的假设是什么?
2、什么是残差,它如何用于评估回归模型?
3、如何区分线性回归模型和非线性回归模型?
4、什么是多重共线性,它如何影响模型性能?
5、异常值如何影响线性回归模型的性能?
6、什么是 MSE 和 MAE 有什么区别?
7、L1 和 L2 正则化是什么,应该在什么时候使用?
8、异方差是什么意思?
9、方差膨胀因子的作用是什么的作用是什么?
10、逐步回归(stepwise regression)如何工作?
11、除了MSE 和 MAE 外回归还有什么重要的指标吗?
1、平均绝对误差(MAE):
MAE的优点是:
MAE的缺点是:
2、均方误差(MSE):
3、均方根误差 (RMSE):
4、R2 score:
R2的缺点:
5、Adjusted R2 score:
首页 科技周边 人工智能 机器学习回归模型相关重要知识点总结

机器学习回归模型相关重要知识点总结

Apr 08, 2023 pm 07:01 PM
机器学习 算法 模型

​1、线性回归的假设是什么?

线性回归有四个假设:

  • 线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。
  • 独立性:特征应该相互独立,这意味着最小的多重共线性。
  • 正态性:残差应该是正态分布的。
  • 同方差性:回归线周围数据点的方差对于所有值应该相同。

2、什么是残差,它如何用于评估回归模型?

残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。

残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。

图片

3、如何区分线性回归模型和非线性回归模型?

两者都是回归问题的类型。两者的区别在于他们训练的数据。

线性回归模型假设特征和标签之间存在线性关系,这意味着如果我们获取所有数据点并将它们绘制成线性(直线)线应该适合数据。

非线性回归模型假设变量之间没有线性关系。非线性(曲线)线应该能够正确地分离和拟合数据。

机器学习回归模型相关重要知识点总结

找出数据是线性还是非线性的三种最佳方法 -

  1. 残差图
  2. 散点图
  3. 假设数据是线性的,训练一个线性模型并通过准确率进行评估。

4、什么是多重共线性,它如何影响模型性能?

当某些特征彼此高度相关时,就会发生多重共线性。相关性是指表示一个变量如何受到另一个变量变化影响的度量。

如果特征 a 的增加导致特征 b 的增加,那么这两个特征是正相关的。如果 a 的增加导致特征 b 的减少,那么这两个特征是负相关的。在训练数据上有两个高度相关的变量会导致多重共线性,因为它的模型无法在数据中找到模式,从而导致模型性能不佳。所以在训练模型之前首先要尽量消除多重共线性。

5、异常值如何影响线性回归模型的性能?

异常值是值与数据点的平均值范围不同的数据点。换句话说,这些点与数据不同或在第 3 标准之外。

机器学习回归模型相关重要知识点总结

线性回归模型试图找到一条可以减少残差的最佳拟合线。如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高 MSE 的模型。

6、什么是 MSE 和 MAE 有什么区别?

MSE 代表均方误差,它是实际值和预测值之间的平方差。而 MAE 是目标值和预测值之间的绝对差。

MSE 会惩罚大错误,而 MAE 不会。随着 MSE 和 MAE 的值都降低,模型趋向于一条更好的拟合线。

7、L1 和 L2 正则化是什么,应该在什么时候使用?

在机器学习中,我们的主要目标是创建一个可以在训练和测试数据上表现更好的通用模型,但是在数据非常少的情况下,基本的线性回归模型往往会过度拟合,因此我们会使用 l1 和l2 正则化。

L1 正则化或 lasso 回归通过在成本函数内添加添加斜率的绝对值作为惩罚项。有助于通过删除斜率值小于阈值的所有数据点来去除异常值。

L2 正则化或ridge 回归增加了相当于系数大小平方的惩罚项。它会惩罚具有较高斜率值的特征。

l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。

8、异方差是什么意思?

它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。

数据内部异方差的最大原因之一是范围特征之间的巨大差异。例如,如果我们有一个从 1 到 100000 的列,那么将值增加 10% 不会改变较低的值,但在较高的值时则会产生非常大的差异,从而产生很大的方差差异的数据点。

9、方差膨胀因子的作用是什么的作用是什么?

方差膨胀因子(vif)用于找出使用其他自变量可预测自变量的程度。

让我们以具有 v1、v2、v3、v4、v5 和 v6 特征的示例数据为例。现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。

如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

10、逐步回归(stepwise regression)如何工作?

逐步回归是在假设检验的帮助下,通过移除或添加预测变量来创建回归模型的一种方法。它通过迭代检验每个自变量的显著性来预测因变量,并在每次迭代之后删除或添加一些特征。它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。

它可以非常高效地管理大量数据,并解决高维问题。

11、除了MSE 和 MAE 外回归还有什么重要的指标吗?

图片

我们用一个回归问题来介绍这些指标,我们的其中输入是工作经验,输出是薪水。下图显示了为预测薪水而绘制的线性回归线。

图片

1、平均绝对误差(MAE):

图片

平均绝对误差 (MAE) 是最简单的回归度量。它将每个实际值和预测值的差值相加,最后除以观察次数。为了使回归模型被认为是一个好的模型,MAE 应该尽可能小。

MAE的优点是:

简单易懂。结果将具有与输出相同的单位。例如:如果输出列的单位是 LPA,那么如果 MAE 为 1.2,那么我们可以解释结果是 +1.2LPA 或 -1.2LPA,MAE 对异常值相对稳定(与其他一些回归指标相比,MAE 受异常值的影响较小)。

MAE的缺点是:

MAE使用的是模函数,但模函数不是在所有点处都可微的,所以很多情况下不能作为损失函数。

2、均方误差(MSE):

图片

MSE取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。为了使回归模型被认为是一个好的模型,MSE 应该尽可能小。

MSE的优点:平方函数在所有点上都是可微的,因此它可以用作损失函数。

MSE的缺点:由于 MSE 使用平方函数,结果的单位是输出的平方。因此很难解释结果。由于它使用平方函数,如果数据中有异常值,则差值也会被平方,因此,MSE 对异常值不稳定。

3、均方根误差 (RMSE):

图片

均方根误差(RMSE)取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。然后取结果的平方根。因此,RMSE 是 MSE 的平方根。为了使回归模型被认为是一个好的模型,RMSE 应该尽可能小。

RMSE 解决了 MSE 的问题,单位将与输出的单位相同,因为它取平方根,但仍然对异常值不那么稳定。

上述指标取决于我们正在解决的问题的上下文, 我们不能在不了解实际问题的情况下,只看 MAE、MSE 和 RMSE 的值来判断模型的好坏。

4、R2 score:

图片

如果我们没有任何输入数据,但是想知道他在这家公司能拿到多少薪水,那么我们能做的最好的事情就是给他们所有员工薪水的平均值。

图片

R2 score 给出的值介于 0 到 1 之间,可以针对任何上下文进行解释。它可以理解为是拟合度的好坏。

SSR 是回归线的误差平方和,SSM 是均线误差的平方和。我们将回归线与平均线进行比较。

图片

  • 如果 R2 得分为 0,则意味着我们的模型与平均线的结果是相同的,因此需要改进我们的模型。
  • 如果 R2 得分为 1,则等式的右侧部分变为 0,这只有在我们的模型适合每个数据点并且没有出现误差时才会发生。
  • 如果 R2 得分为负,则表示等式右侧大于 1,这可能发生在 SSR > SSM 时。这意味着我们的模型比平均线最差,也就是说我们的模型还不如取平均数进行预测

如果我们模型的 R2 得分为 0.8,这意味着可以说模型能够解释 80% 的输出方差。也就是说,80%的工资变化可以用输入(工作年限)来解释,但剩下的20%是未知的。

如果我们的模型有2个特征,工作年限和面试分数,那么我们的模型能够使用这两个输入特征解释80%的工资变化。

R2的缺点:

随着输入特征数量的增加,R2会趋于相应的增加或者保持不变,但永远不会下降,即使输入特征对我们的模型不重要(例如,将面试当天的气温添加到我们的示例中,R2是不会下降的即使温度对输出不重要)。

5、Adjusted R2 score:

上式中R2为R2,n为观测数(行),p为独立特征数。Adjusted R2解决了R2的问题。

当我们添加对我们的模型不那么重要的特性时,比如添加温度来预测工资.....

图片

当添加对模型很重要的特性时,比如添加面试分数来预测工资……

图片

以上就是回归问题的重要知识点和解决回归问题使用的各种重要指标的介绍及其优缺点,希望对你有所帮助。

以上是机器学习回归模型相关重要知识点总结的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 Jun 01, 2024 pm 04:41 PM

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

See all articles