在重复和挑战性天气条件下的数据集和驾驶感知
arXiv论文“Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions“,22年8月1日上传,Cornell和Ohio State两个大学的工作。
近年来,由于采用大规模数据集,自动驾驶汽车的感知能力有所提高,这些数据集通常在特定位置和良好的天气条件下收集。然而,为了达到高安全要求,这些感知系统必须在各种天气条件下鲁棒运行,包括雪和雨的情况。
本文提出了一个实现鲁棒自主驾驶的数据集,采用一个新数据收集过程,即在不同场景(城市、公路、农村、校园)、天气(雪、雨、太阳)、时间(白天/晚上)和交通条件(行人、自行车手和汽车)下,沿着15公里的路线重复记录数据。
该数据集包括来自摄像机和激光雷达传感器的图像和点云,以及高精度GPS/INS,建立跨路线的对应关系。该数据集包括道路和目标标注,具有非模态(amodal)掩码捕捉的局部遮挡和3-D边框。
重复路径为目标发现、连续学习和异常检测开辟了新的研究方向。
Ithaca365链接:A new dataset to enable robust autonomous driving via a novel data collection process
如图是数据采集的传感器配置:
如图a显示了路线图,其中包含在多个位置捕获的图像。驾驶被安排在一天中的不同时间采集数据,包括晚上。在道路清理之前和之后,记录大雪情况。
数据集的一个关键特色是,在不同的条件下可以观察到相同的位置;图b中显示了一个示例。
如图显示了不同条件下的遍历解析:
开发一个自定义标记工具,用于获取道路和目标的非模态掩码。对于不同环境条件下的道路标签,例如积雪覆盖的道路,用相同路线的重复遍历。具体而言,通过GPS姿态和激光雷达数据构建的点云道路地图,将“好天气”的道路标签转换为“恶劣天气”。
路线/数据分为76个区间。将点云投影到BEV中,并使用多边形标注器标记道路。一旦在BEV中标记了道路(生成2-D道路边界),将多边形分解为较小的150 m^2多边形,采用平均高度1.5 m的阈值,多边形边界内的点做平面拟合来确定道路高度。
用RANSAC和回归器将平面拟合到这些点;然后用估计的地平面计算沿边界每个点的高度。将道路点投影到图像中,并创建深度(depth)掩码,获得道路的非模态标签。将位置与带有GPS的标记地图匹配,并用ICP优化路线,可以将地平面投影到新收集路线的特定位置。
对ICP解决方案进行最终检查,其方法是验证道路标签的平均投影真值掩码与相同位置的所有其他真值掩码符合80% mIOU;如果不符合,则查询位置数据不会被检索到。
非模态目标用Scale AI标记的六种前景目标类别:汽车、公共汽车、卡车(包括货物、消防车、皮卡、救护车)、行人、自行车手和摩托车手。
这种标记范式有三个主要组成部分:首先识别目标的可见实例,然后推断被遮挡的实例分割掩码,最后标记每个目标的遮挡顺序。在最左侧的前向摄影机视图上执行标记。遵循与KINS(“Amodal instance segmentation with kins dataset“. CVPR,2019)相同的标准。
为了展示数据集的环境多样性和非模态质量,训练并测试了两个基线网络,以在像素级识别非模态道路,即使道路被雪或汽车覆盖也能工作。第一个基线网络是Semantic Foreground Inpainting(SFI)。第二个基线,如图所示,采用以下三个创新改进SFI。
- 位置和通道注意:因为非模态分割主要推断什么是不可见的,所以上下文是一个非常重要的线索。DAN(“Dual attention network for scene segmentation“,CVPR‘2019)引入了两项创新,捕捉两种不同的背景。位置注意模块(PAM)使用像素特征关注图像的其他像素,实际上从图像的其他部分捕获上下文。通道注意模块(CAM)使用类似的注意机制,有效地聚集通道的信息。这里在主干特征提取器上应用这两个模块。结合CAM和PAM更好地定位精细掩码边界。通过上采样层获得最终前景实例掩码。
- 混合池化作修补(inpainting):最大池化作为修补操作,将重叠的前景特征替换为附近的背景特征,帮助恢复非模态道路特征。然而,由于背景特征通常是平滑分布的,因此最大池化操作对添加的任何噪声非常敏感。相反,平均池化操作可以自然地减轻噪声。为此,结合平均池化和最大池化进行修补,称之为混合池化(Mixture Pooling)。
- 求和运算:在最后上采样层之前,不直接传递来自混合池化模块的特征,而是包含来自PAM模块输出的残余链接。通过在道路分割分支中联合优化两个特征图,PAM模块还可以学习遮挡区域的背景特征。这可以带来更准确地恢复背景特征。
如图是PAM和CAM的架构图:
混合池化做修补的算法伪代码如下所示:
非模态道路分割的训练和测试代码如下:https://github. com/coolgrasshopper/amodal_road_segmentation
实验结果如下:
以上是在重复和挑战性天气条件下的数据集和驾驶感知的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

智能应用控制是Windows11中非常有用的工具,可帮助保护你的电脑免受可能损害数据的未经授权的应用(如勒索软件或间谍软件)的侵害。本文将解释什么是智能应用控制、它是如何工作的,以及如何在Windows11中打开或关闭它。什么是Windows11中的智能应用控制?智能应用控制(SAC)是Windows1122H2更新中引入的一项新安全功能。它与MicrosoftDefender或第三方防病毒软件一起运行,以阻止可能不必要的应用,这些应用可能会减慢设备速度、显示意外广告或执行其他意外操作。智能应用

如此强大的AI模仿能力,真的防不住,完全防不住。现在AI的发展已经达到了这种程度吗?你前脚让自己的五官乱飞,后脚,一模一样的表情就被复现出来,瞪眼、挑眉、嘟嘴,不管多么夸张的表情,都模仿的非常到位。加大难度,让眉毛挑的再高些,眼睛睁的再大些,甚至连嘴型都是歪的,虚拟人物头像也能完美复现表情。当你在左侧调整参数时,右侧的虚拟头像也会相应地改变动作给嘴巴、眼睛一个特写,模仿的不能说完全相同,只能说表情一模一样(最右边)。这项研究来自慕尼黑工业大学等机构,他们提出了GaussianAvatars,这种

本文经自动驾驶之心公众号授权转载,转载请联系出处。原标题:MotionLM:Multi-AgentMotionForecastingasLanguageModeling论文链接:https://arxiv.org/pdf/2309.16534.pdf作者单位:Waymo会议:ICCV2023论文思路:对于自动驾驶车辆安全规划来说,可靠地预测道路代理未来行为是至关重要的。本研究将连续轨迹表示为离散运动令牌序列,并将多智能体运动预测视为语言建模任务。我们提出的模型MotionLM具有以下几个优点:首

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

《ComputerWorld》杂志曾经写过一篇文章,说“编程到1960年就会消失”,因为IBM开发了一种新语言FORTRAN,这种新语言可以让工程师写出他们所需的数学公式,然后提交给计算机运行,所以编程就会终结。图片又过了几年,我们听到了一种新说法:任何业务人员都可以使用业务术语来描述自己的问题,告诉计算机要做什么,使用这种叫做COBOL的编程语言,公司不再需要程序员了。后来,据说IBM开发出了一门名为RPG的新编程语言,可以让员工填写表格并生成报告,因此大部分企业的编程需求都可以通过它来完成图

在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP。这两个模型都是多模态模型,以某种方式连接文本和图像。CLIP的全称是对比语言-图像预训练(ContrastiveLanguage-ImagePre-training),它是一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为目前火热的StableDiffusion并不是单一模型,而是由多个模型组成。其中一个关键组成部分是文本编码器,用于对用户的文本输入进行编码,而这个文本编码器就是CLIP模型中的文本编码器CL

身高1.65米,体重55公斤,全身44个自由度,能够快速行走、敏捷避障、稳健上下坡、抗冲击干扰的人形机器人,现在可以带回家了!傅利叶智能的通用人形机器人GR-1已开启预售机器人大讲堂傅利叶智能FourierGR-1通用人形机器人现已开放预售。GR-1拥有高度仿生的躯干构型和拟人化的运动控制,全身44个自由度,具备行走、避障、越障、上下坡、抗干扰、适应不同路面等运动能力,是通用人工智能的理想载体。官网预售页面:www.fftai.cn/order#FourierGR-1#傅利叶智能需要进行改写的内

轨迹预测近两年风头正猛,但大都聚焦于车辆轨迹预测方向,自动驾驶之心今天就为大家分享顶会NeurIPS上关于行人轨迹预测的算法—SHENet,在受限场景中人类的移动模式通常在一定程度上符合有限的规律。基于这个假设,SHENet通过学习隐含的场景规律来预测一个人的未来轨迹。文章已经授权自动驾驶之心原创!笔者的个人理解由于人类运动的随机性和主观性,当前预测一个人的未来轨迹仍然是一个具有挑战性的问题。然而,由于场景限制(例如平面图、道路和障碍物)以及人与人或人与物体的交互性,在受限场景中人类的移动模式通
