用更好的人工智能建设更美好的社会
人工智能 (AI) 具有巨大的潜力,可以通过创新来改善社会的方方面面,从传统工程系统到医疗保健,再到艺术和娱乐领域的创意过程。例如,在好莱坞,制片厂正在使用人工智能来揭示和衡量剧本中的偏见——制片人和编剧需要这些工具来创造更公平和更具包容性的媒体。
然而,人工智能的智能程度取决于它所训练的数据,而这些数据反映了现实生活中的偏见。为了避免长期存在刻板印象和排他性,技术人员正在解决现实生活和创新中的公平和包容问题。
人类天生的偏见
由于技术人员希望使用 AI 来寻找以人为中心的解决方案来优化行业实践和日常生活,因此,注意我们与生俱来的偏见可能会产生意想不到的后果至关重要。
“作为人类,我们有很大的偏见,”德勤人工智能研究所全球负责人、德勤技术和人工智能伦理负责人 Ammanath说。“随着这些偏见融入系统,社会各部分很可能被抛在后面——代表性不足的少数族裔,无法使用某些工具的人——这可能会导致世界上更多的不平等。”
如果系统是用有偏见的数据训练出来的,或者研究人员没有考虑到他们自己的观点如何影响研究方向,那么出发点是好的项目——创造平等的结果或减轻过去的不平等——最终仍可能产生偏见。
Ammanath表示,到目前为止,对 AI 偏见的调整通常是对发现有偏见的算法或事后出现的代表性不足的人口统计数据做出的反应。但是,企业现在必须学习如何积极主动,尽早缓解这些问题,并为他们的人工智能工作中的失误承担责任。
人工智能中的算法偏差
在人工智能中,偏见以算法偏见的形式出现。“算法偏差是构建 AI 模型的一系列挑战,”惠普实验室首席架构师兼惠普企业 (HPE) 副总裁 Kirk Bresniker 解释说。“我们可能会遇到挑战,因为我们的算法无法处理不同的输入,或者因为我们没有收集到足够广泛的数据集来整合到我们的模型训练中。无论哪种情况,我们都没有足够的数据。”
算法偏差也可能来自不准确的处理、数据被修改或有人注入错误信号。无论有意与否,这种偏见都会导致不公平的结果,可能会赋予一个群体特权或完全排除另一个群体。
例如,Ammanath 描述了一种算法,旨在识别不同类型的鞋子,例如人字拖、凉鞋、正装鞋和运动鞋。然而,当它发布时,该算法无法识别带高跟鞋的女鞋。开发团队是一群刚毕业的大学毕业生——都是男性——他们从没想过用女鞋训练它。
“这是一个微不足道的例子,但你意识到数据集是有限的,”Ammanath 说。“现在考虑使用历史数据来诊断疾病或疾病的类似算法。如果它没有针对某些体型、某些性别或某些种族进行训练怎么办?这些影响是巨大的。”
“至关重要的是,她说,如果你没有那种多样性,你就会错过某些场景。”
更好的人工智能意味着自我监管和道德准则
简单地获取更多(和更多样化)的数据集是一项艰巨的挑战,尤其是在数据变得更加集中的情况下。数据共享带来了许多问题,其中最重要的是安全和隐私。
科罗拉多大学博尔德分校媒体研究助理教授 Nathan Schneider 表示:“目前,我们面临的情况是,个人用户的权力远低于收集和处理其数据的大型公司。”
扩展的法律和法规很可能最终会规定何时以及如何共享和使用数据。但是,创新不会等待立法者。目前,人工智能开发组织有责任成为优秀的数据管家,保护个人隐私,同时努力减少算法偏差。德勤的 Ammanath 表示,由于技术成熟得如此之快,不可能依靠法规来涵盖所有可能的情况。“我们将进入一个在遵守现有法规和自我监管之间取得平衡的时代。”
这种自我监管意味着提高构建人工智能解决方案的整个技术供应链的标准,从数据到培训再到使这些解决方案成为可能所需的基础设施。此外,企业需要为跨部门的个人创造途径,以提出对偏见的担忧。虽然不可能完全消除偏见,但企业必须定期审核其人工智能解决方案的有效性。
由于人工智能的高度情景语境性质,每家企业的自我监管看起来都不同。例如,HPE 制定了道德 AI 准则。来自整个公司的各种不同的人花了将近一年的时间共同制定公司的人工智能原则,然后与广泛的员工一起审查这些原则,以确保它们可以被遵循并且它们对企业文化有意义。
HPE 的 Bresniker 说:“我们希望提高对这些问题的一般理解,然后收集最佳实践。这是每个人的工作——在这个领域有足够的认知。”
人工智能技术已经成熟,从研究发展到实际应用和价值创造,遍及所有行业。人工智能在社会上的日益普及意味着企业现在有道德责任提供强大的、包容的和可访问的解决方案。这种责任促使组织(有时是第一次)检查他们拉入流程的数据。 Bresniker说:“我们希望人们能建立起这种远见,对输入的数据有可衡量的信心。”“他们有能力阻止持续的系统性不平等,为更美好的未来创造公平的结果。”
以上是用更好的人工智能建设更美好的社会的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
