目录
什么是合成数据?
如何生成合成数据?
为什么需要合成数据?
合成数据如何用于训练AI?
合成数据为何能解决日益受到关注的数据隐私问题?
合成数据能否取代真实数据?
首页 科技周边 人工智能 合成数据:机器学习的未来

合成数据:机器学习的未来

Apr 08, 2023 pm 08:41 PM
机器学习 深度学习 合成数据

​译者 | 布加迪

审校 | 孙淑娟

数据可谓是机器学习模型的命脉。但是当这种宝贵资源的访问受到限制时会发生什么?正如许多项目和公司开始展现的那样,这时候合成数据就算不是一种出色的选择,也是一种可行的选择。

合成数据:机器学习的未来

什么是合成数据?

合成数据是人工生成的信息,不是通过直接测量获得。“假”数据本质上不是新的概念或革命性的概念。它实际上是为缺少正常运行所需的可用或必要信息的模型生成测试或训练数据的一种方法。

过去,缺少数据导致了使用随机生成的一组数据点的便捷方法。尽管这对于教学和测试用途可能已经足够了,但随机数据不是您想要拿来训练任何类型的预测模型的数据。这就是合成数据概念的不同之处,它很可靠。

合成数据本质上是一种独特的概念,即我们可以巧妙地生成随机化数据。因此,这种方法可以应用于更复杂的用例,而不仅仅是测试。

如何生成合成数据?

虽然生成合成数据的方式与随机数据没什么不同——只是通过更复杂的输入集,但合成数据确实有不同的目的,因此有独特的要求。

合成方法基于并仅限于预先作为输入而馈入的某些标准。实际上,它不是随机的。它基于一组具有特定分布和标准的样本数据,这些标准决定了数据点的可能范围、分布和频次。大致说来,目的是复制真实数据以填充更大的数据集,然后该数据集将足够庞大,以便训练机器学习模型。

在探索用于提炼合成数据的深度学习方法时,这种方法变得特别令人关注。算法可以相互竞争,目的是在生成和识别合成数据的能力方面相互超越。实际上,这里的目的是搞一场人工军备竞赛,以生成超现实的数据。

为什么需要合成数据?

如果我们不能收集推进文明所需的宝贵资源,就会找到一种创造宝贵资源的方法。这个原则现在同样适用于机器学习和人工智能的数据领域。

在训练算法时,拥有非常大的数据样本量至关重要,否则算法识别的模式有可能对于实际应用来说过于简单。这实际上非常合乎逻辑。正如人类智能往往采取最容易的途径来解决问题,训练机器学习和人工智能时也经常发生同样的情况。

比如说,不妨将这运用于对象识别算法,该算法可以从一组猫图像中准确识别狗。如果数据量太少,AI就有可能依赖不是它试图识别的对象的基本特征的模式。在这种情况下,AI可能仍然有效,但是遇到不遵循最初识别的模式的数据时,就会失效。

合成数据如何用于训练AI?

那么,解决办法是什么?我们画了很多略有不同的动物,迫使网络找到图像的底层结构,而不仅仅是某些像素的位置。但不是手工绘制一百万条狗,最好构建一个系统,专门用于绘制狗,可用于训练分类算法——这实际上是我们在提供合成数据以便训练机器学习时所做的事情。

然而,这种方法存在明显的缺陷。仅仅凭空生成数据代表不了真实世界,因此会导致算法在遇到真实数据时很可能无法运行。解决方案是收集数据子集,分析和识别其中的趋势和范围,然后使用这些数据生成大量随机数据,这些数据很可能代表我们自行收集所有数据后数据的样子。

这也是合成数据的价值所在。我们再也不必无休止地收集数据,然后在使用之前需要清理和处理这些数据。

合成数据为何能解决日益受到关注的数据隐私问题?

全世界目前正在经历一场非常剧烈的转变,尤其是在欧盟:隐私和所生成的数据越来越受到保护。在机器学习和AI领域,加强数据保护是老大难问题。受限制的数据常常正是训练算法为最终用户执行和提供价值所需要的数据,尤其是对于B2C解决方案而言。

个人决定使用解决方案并因此批准使用他们的数据时,隐私问题通常会得到解决。这里的问题是,在您拥有提供足够价值的解决方案、因而愿意交出个人数据之前,很难让用户向您提供其个人数据。因此,供应商常常会陷入先有鸡还是先有蛋的困境。

合成数据就是解决方案,公司可以通过早期采用者获得数据子集。之后,它们可以使用这些信息作为基础,以便生成足够的数据用于训练机器学习和AI。这种方法可以大大减少对私有数据的费时又费钱的需求,仍可以为实际用户开发算法。

对于医疗保健、银行和法律等某些行业而言,合成数据提供了一种更容易访问以前无法获得的大量数据的方法,消除了新的和更先进的算法通常面临的制约因素。

合成数据能否取代真实数据?

真实数据的问题在于它不是为了训练机器学习和AI算法而生成的,它只是我们周围发生的事件的副产品。如前所述,这显然限制了收集数据的可用性和易用性,还限制了数据的参数和可能破坏结果的缺陷(异常值)的可能性。这就是为什么可以定制和控制的合成数据在训练模型时更高效。

然而,尽管非常适用于训练场景,但合成数据将不可避免地始终依赖至少一小部分真实数据用于自身的创建。所以合成数据永远不会取代它所依赖的初始数据。更现实地说,它将大幅减少算法训练所需的真实数据量,这个过程需要比测试多出一大截的数据——通常80%的数据用于训练,另外20%的数据用于测试。

最后,如果处理得当,合成数据提供了一种更快捷、更有效的方式来获取我们需要的数据,成本比从现实世界获取数据的成本更低,同时减少了烦人的数据隐私问题。

原文标题:Synthetic data: The future of machine learning​,作者:Christian Lawaetz Halvorsen​

以上是合成数据:机器学习的未来的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 May 30, 2024 am 09:35 AM

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

See all articles