2021年ML和NLP学术统计:谷歌断层第一,强化学习大牛Sergey Levine位居榜首
2021 年是自然语言处理(NLP)和机器学习(ML)非常高产的一年,现在是时候统计一下去年 NLP 和 ML 领域的论文了。
来自剑桥大学机器学习和自然语言处理的研究员 MAREK REI 总结分析了 2021 年经典论文,并归纳了 2021 年 ML 和 NLP 出版物的统计数据,他对人工智能行业的主要会议和期刊进行了分析,它们包括 ACL、EMNLP、NAACL、EACL、CoNLL、TACL、CL、NeurIPS、AAAI、ICLR、 ICML。
论文的分析是使用一系列自动化工具完成的,可能并不完美,会存在一些纰漏和错误。出于某些原因,一些作者开始以模糊的形式发布他们的论文,以防止任何形式的内容复制或自动提取内容,分析过程排除了这些论文。
现在我们看一下 MAREK REI 统计结果。
以学术会议统计
大多数会议的投稿量不断上升并打破纪录。ACL 似乎是一个例外, AAAI 几乎趋于平稳,而 NeurIPS 仍保持稳定增长。
以机构统计
2021 年发表论文数断层式领先的研究机构当属谷歌;微软排名第二;CMU、斯坦福大学、Meta 和 MIT 排名紧随其后,清华大学位居第七。微软、CAS、亚马逊、腾讯、剑桥、华盛顿和阿里巴巴在 NLP 会议上拥有相当大比例的论文脱颖而出,而其他顶级组织似乎主要关注 ML 领域。
从 2012-2021 年的数据来看,谷歌发表了 2170 篇论文位居第一,超过了微软发表的 2013 篇论文。CMU 发表了 1881 篇论文,排名第三。
大多数机构还在继续增加其年度出版物数量。谷歌发表论文数量以前呈线性增长,现在这一趋势有所缓解,但仍然比以前发表的论文多;CMU 去年有一个平台期,但今年已经弥补了这一点;IBM 似乎是唯一一家发表论文略有下滑的机构。
以作者统计
接下来,让我们看看 2021 年发表论文最多的研究人员。Sergey Levine(加州大学伯克利分校电气工程和计算机科学系助理教授)发表了 42 篇论文,排名第一;刘铁岩(微软)、周杰(清华大学)、Mohit Bansal(北卡罗来纳大学教堂山分校)、Graham Neubig(CMU)发表论文数量排名也比较靠前。
纵观 2012-2021 年,Sergey Levine 发表的论文位居榜首,去年他排名第六,今年一跃排名第一;Yoshua Bengio(蒙特利尔)、Graham Neubig (CMU)、张岳 (西湖大学)、周明 (创新工场首席科学家)、 Ting Liu (哈尔滨工业大学) 等人发表论文数量排名也比较靠前。
Sergey Levine 以相当大的优势创造了新的记录;Mohit Bansal 的论文数量也大幅增加,2021 年发表了 31 篇论文,与 Graham Neubig 持平;Yoshua Bengio 的论文数量在 2020 年有所减少,但现在又上升了。
以第一作者发表论文统计
发表论文数量最多的研究人员通常是博士后和导师。相比之下,以第一作者身份发表论文较多的通常是从事实际研究的人。
Ramit Sawhney(Tower Research Capital 技术总监)在 2021 年发表了 9 篇有影响力的论文,Jason Wei(谷歌)、Tiago Pimentel (剑桥大学博士生)分别发表了 6 篇比较有影响力的论文。
从 2012-2021 年分布来看,Ivan Vulić (剑桥大学)和 Zeyuan Allen-Zhu(微软)都以第一作者身份发表了 24 篇比较有影响力的论文,并列第一;Yi Tay (谷歌)和李纪为(香侬科技)排名第二,分别以第一作者身份发表了 23 篇和 22 篇论文比较有影响力的论文;Ilias Diakonikolas (威斯康星大学麦迪逊分校)以第一作者身份发表了 15 篇 NeurIPS 论文。
以国家统计
2021 年各国出版物数量,美国出版物数量最多,中国和英国分别位列第 2、第 3。在美国和英国,NeurIPS 所占比例最大,而 AAAI 在中国占比最大。
纵坐标从上到下分别为 500、1000、1500、2000、2500,依次类推
几乎所有排名靠前的国家都在继续增加其出版物数量,并在 2021 年创造了新的记录。对于美国来说,这一增长是最大的,进一步扩大了领先优势。
在美国,谷歌、微软和 CMU 再次位居出版数量之首。
在中国,清华大学、中国科学院和北京大学在 2021 年发表的论文最多。
以主题相关度统计
通过可视化得出,这些组织主要是根据地理位置的接近程度聚集在一起的,公司位于中间。
我们也可以将作者进行可视化,不过这种可视化有些难以理解。
以关键词统计
我们还可以绘制包含特定关键词的论文比例,并跟踪这一比例随时间的变化。
「neural」一词似乎有轻微的下降趋势,虽然你仍可以在 80% 的论文中见到它。同时,「recurrent」和「convolutional」的占比也在下降,而「transformer」一词出现在了 30% 以上的论文中。
如果单看「adversarial」一词,我们会发现它在 ICLR 中很常见,几乎一半的论文都提到了它。ICML 和 NeurIPS 中的「adversarial」比例似乎之前已经达到顶峰,而 AAAI 还没有。
在过去的几年里,「transformer」一词变得非常流行。它在 NLP 论文中应用尤其广泛,超过 50% 的已发表论文都包含它,在所有的 ML 会议中,它的受欢迎程度也在稳步上升。
以上是2021年ML和NLP学术统计:谷歌断层第一,强化学习大牛Sergey Levine位居榜首的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

如果您需要了解如何在Excel中使用具有多个条件的筛选功能,以下教程将指导您完成相应步骤,确保您可以有效地对数据进行筛选和排序。Excel的筛选功能是非常强大的,能够帮助您从大量数据中提取所需的信息。这个功能可以根据您设定的条件,过滤数据并只显示符合条件的部分,让数据的管理变得更加高效。通过使用筛选功能,您可以快速找到目标数据,节省了查找和整理数据的时间。这个功能不仅可以应用在简单的数据列表上,还可以根据多个条件进行筛选,帮助您更精准地定位所需信息。总的来说,Excel的筛选功能是一个非常实用的

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

这周,由OpenAI、微软、贝佐斯和英伟达投资的机器人公司FigureAI宣布获得接近7亿美元的融资,计划在未来一年内研发出可独立行走的人形机器人。而特斯拉的擎天柱也屡屡传出好消息。没人怀疑,今年会是人形机器人爆发的一年。一家位于加拿大的机器人公司SanctuaryAI最近发布了一款全新的人形机器人Phoenix。官方号称它能以和人类一样的速率自主完成很多工作。世界上第一台能以人类速度自主完成任务的机器人Pheonix可以轻轻地抓取、移动并优雅地将每个对象放置在它的左右两侧。它能够自主识别物体的

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
