北大王亦洲:擦亮可信AI研究名片,需要产学研结合
人工智能(Artificial Intelligence,AI)发轫于20世纪50年代,至今已经历了三次发展浪潮,不管是实验室阶段还是大规模产业化阶段,研究者们几十年如一日不变的都是推进其技术的进步,希望机器真的有一天能具有一般人类智慧,执行全方位的人类认知能力。
近年来,为了让AI更加健康发展,有一项技术领域正在成为产业界和学术界研究的重点:可信AI,即将人类社会的正面价值观,通过技术赋予到人工智能上,包括可解释、公平性、隐私保护和公平性。
从学术研究层面来说,可信AI主要是针对算法和系统层面的研究,包括安全性/鲁棒性、可解释性、隐私性、公平性、可审计性/问责性、环境保护。可解释性包括学习方法或模型的理论可解释、算法可解释、行为可解释;鲁棒性主要针对模型稳定性研究、攻击模型和防守模型;隐私保护指的是攻击与保护方法直接的博弈,如差分隐私、多中心联邦学习;公平性针对的是各种数据、模型的偏置研究,平等和公正的平衡;而环保指的是寻求高能效策略,更高能效的计算硬件。
与可信AI学术研究不同,企业更多是针对当下的问题,提出解决方案。如2015年,蚂蚁集团启动基于“端特征”的手机丢失风险研究项目,旨在用AI技术保护用户的隐私安全。为了解决了AI中的公平性(Fairness),IBM于2018年开发了多个AI可信工具,在AI系统中采用不带偏见的数据集和模型,从而避免对特定群体的不公平。产业界对可信AI的应用加更加苛刻,容错率更高。很多可信AI白皮书提到,可信AI真正落地起来,需要放到生产流程里面,让其成为一种机制,发挥技术的约束作用。
青年学生是重要的技术人才储备。对于研究可信AI的青年学生来说,对从事可信AI怎么准备,在他们现在的学习和生活中,就应了解学术的前沿,以及业界最新技术趋势,思考哪些技术可以应用到哪些问题上,主动观察了解所处的世界,以及业界的需求痛点和技术瓶颈。比如,最近一档可信AI实战科技真人秀,就联动了全国一些顶尖高校,通过可信AI在工业界“科技反诈”当中的应用,还原了可信AI技术在实际应用中的能力,把学术界和产业界正在做的事,通过大家都能理解的形式打通起来,让技术从业者、技术研究者都深度参与其中。
做AI研究,“复杂度”是一个关键词。环境复杂度、任务复杂度、系统复杂度决定了AI的水平。对它的研究可以揭示AI产生原理,也可以回答AI的终极问题,即对人类命运的最终影响。未来可信AI研究,也要从复杂度分析来看AI为人类带来的价值,更需要学界和产业界共同努力来推动。
以上是北大王亦洲:擦亮可信AI研究名片,需要产学研结合的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
