Google用人工智能凸显出人类认知的缺陷
如今,一些看起来非常像人类的句子实际上是由人工智能系统生成的,这些系统已经在大量的人类文本中进行了训练。人们习惯于假定流畅的语言来自于有思想、有感觉的人类,以至于相反的证据可能难以理解,并且认为如果一个人工智能模型能够流畅地表达自己,就意味着它也像人类一样思考和感受。
因此,Google的一名前工程师最近声称,Google的人工智能系统LAMDA有自我意识,因为它可以雄辩地生成关于其所谓感受的文本,这也许并不奇怪。这一事件和随后的媒体报道导致了一些文章和帖子,怀疑关于人类语言的计算模型是有生命的说法。
由Google的LaMDA等模型生成的文本可能很难与人类写的文本区分开来。这一令人印象深刻的成就是一项长达数十年的计划的结果,该计划旨在建立能够生成符合语法、有意义的语言的模型。今天的模型,即接近人类语言的数据和规则集,在几个重要方面与这些早期的尝试不同。首先,它们基本上是在整个互联网上训练的。第二,它们可以学习相距甚远的词语之间的关系,而不仅仅是相邻的词语。第三,它们通过大量的内部进行调整,甚至连设计它们的工程师都很难理解为什么它们会产生一个词的序列而不是另一个。
大型人工智能语言模型可以进行流畅的对话。然而,它们没有要传达的整体信息,所以它们的短语往往遵循常见的文学套路,这些套路是从被训练的文本中提取的。人脑有推断词语背后意图的硬性规定。每次你参与谈话时,你的大脑都会自动构建一个谈话伙伴的心理模型。然后,你利用他们所说的话,用这个人的目标、感觉和信念来填补这个模型。从话语到心理模型的跳跃过程是无缝的,每当你收到一个完整的句子时就会被触发。这个认知过程在日常生活中为你节省了大量的时间和精力,大大促进了你的社会互动。然而,在人工智能系统的情况下,它却失灵了,因为它凭空建立了一个心理模型。
一个可悲的讽刺是,让人们把人性赋予大型人工智能语言模型的认知偏见也会导致它们以不人道的方式对待真正的人类。社会文化语言学研究表明,假设流畅的表达和流畅的思维之间的联系过于紧密,会导致对不同的人产生偏见。例如,有外国口音的人往往被认为是不太聪明,不太可能得到他们所胜任的工作。对那些不被认为是有声望的方言,如美国的南方英语,对使用手语的聋哑人,以及对有口吃等语言障碍的人,也存在类似的偏见。这些偏见是非常有害的,往往会导致种族主义和性别歧视的假设,并被一再证明是毫无根据的。
以上是Google用人工智能凸显出人类认知的缺陷的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
