目录
人工智能与机器学习简史
人工智能的影响是什么?
机器学习的影响是什么?
多种算法
人工智能和机器学习如何在企业中发展?
有哪些道德和法律问题?
人工智能和机器学习的未来是什么?
首页 科技周边 人工智能 AI vs ML:人工智能和机器学习概述

AI vs ML:人工智能和机器学习概述

Apr 09, 2023 pm 01:11 PM
人工智能 机器学习

AI vs ML:人工智能和机器学习概述

人工智能和机器学习密切相关,但最终却不同。

机器可以复制甚至超越人类思维的想法成为先进计算框架的灵感来源——现在,无数企业正在进行巨额投资。这一概念的核心是人工智能(AI)和机器学习(ML)。

这些术语通常是同义词,可以互换使用。实际上,人工智能和机器学习代表着两种不同的事物——尽管它们是相关的。从本质上讲:

人工智能可以被定义为计算系统模仿或模仿人类思维和行为的能力。

机器学习是人工智能的一个子集,指的是一种无需人类明确编程或直接管理就能学习的系统。

如今,人工智能和机器学习在几乎所有行业和业务中都扮演着重要的角色。它们驱动商业系统和消费设备。自然语言处理、机器视觉、机器人、预测分析和许多其他数字框架都依赖于其中一种或两种技术来有效运作。

人工智能与机器学习简史

创建能像人类一样思考的机器的想法一直令整个社会着迷。在20世纪40年代和50年代,包括AlanTuring在内的研究人员和科学家开始探索创造“人工大脑”的想法。1956年,DartmouthCollege的一组研究人员开始更彻底地探索这个想法。在该校举行的一次研讨会上,“人工智能”一词诞生了。

在接下来的几十年里,该领域取得了进展。1964年,麻省理工人工智能实验室的JosephWeizenbaum发明了一个名为ELIZA的程序。其证明了自然语言和对话在机器上的可行性。ELIZA依靠基本的模式匹配算法来模拟真实世界的对话。

20世纪80年代,随着更强大的计算机出现,人工智能研究开始加速。1982年,JohnHopfield展示了神经网络可以以更先进的方式处理信息。各种形式的人工智能开始成形,1980年出现了第一个人工神经网络(ANN)。

在过去的二十年里,由于计算能力和软件的巨大进步,这一领域取得了显著的进步。人工智能和机器学习现在被广泛应用于各种企业部署中。这些技术被用于Siri和Alexa等自然语言系统、自动驾驶汽车和机器人、电脑游戏中的自动决策系统、Netflix等推荐引擎,以及虚拟现实(VR)和增强现实(AR)等扩展现实(XR)工具。

机器学习尤其蓬勃发展。政府实体、企业和其他机构越来越多地使用其来识别涉及统计数据和其他形式的结构化和非结构化数据的复杂和难以捉摸的模式。这包括流行病学和医疗保健、金融建模和预测分析、网络安全、聊天机器人和其他用于客户销售和支持的工具等领域。事实上,许多供应商将机器学习作为云计算和分析应用程序的一部分。

人工智能的影响是什么?

机器模仿人类思维和行为的能力深刻地改变了这两个实体之间的关系。人工智能释放大规模自动化,并支持一系列更先进的数字技术和工具,包括VR、AR、数字孪生、图像和面部识别、连接设备和系统、机器人、个人助理和各种高度交互的系统。

这包括在现实世界中导航的自动驾驶汽车、回答问题和开关灯的智能助手、自动化金融投资系统,以及机场摄像头和面部识别。后者包括航空公司在登机口使用的生物识别登机牌,以及只需扫描面部即可通过安检的全球入境系统。

事实上,企业正在以新的、创新的方式让人工智能发挥作用。例如,旅游行业使用的动态定价模型可以实时衡量供需状况,并根据变化的情况调整航班和酒店的价格。

人工智能技术被用于更好地了解供应变化动态,并调整采购模型和预测。在仓库中,机器视觉技术(由人工智能支持)可以发现诸如丢失托盘和生产缺陷等人眼无法察觉的小问题。与此同时,聊天机器人会分析客户的输入,并实时提供与上下文相关的答案。

如所见,这些能力正在快速发展——尤其是当连接系统被添加到组合中时。智能建筑、智能交通网络,乃至智慧城市正在形成。随着数据的流入,人工智能系统决定下一个最佳步骤或调整。

同样,数字孪生越来越多地被航空公司、能源公司、制造商和其他企业用于模拟实际系统和设备,并探索各种虚拟选项。这些先进的模拟器可以预测维护和故障,还可以深入了解更便宜、更复杂的业务处理方式。

机器学习的影响是什么?

近年来,机器学习也取得了显著进展。通过使用统计算法,机器学习解锁了传统上与数据挖掘和人工分析相关的洞察力。

其使用样本数据(称为训练数据)来识别模式,并将它们应用到可能随时间变化的算法中。深度学习是机器学习的一种,其使用人工神经网络来模拟人脑的工作方式。

以下是使用机器学习的主要方法:

  • 监督学习,这需要一个人来识别所需的信号和输出。
  • 无监督学习,允许系统独立于人类运行,并找到有价值的输出。
  • 半监督学习和强化学习,这涉及一个计算机程序与动态环境相互作用,以实现确定的目标和结果。后者的一个例子是计算机国际象棋游戏。在某些情况下,数据科学家使用一种混合方法,将这些方法中的多个元素结合在一起。

多种算法

几种类型的机器学习算法发挥了关键作用:

  • 神经网络: 神经网络模拟人脑的思维方式。它们是识别模式的理想选择,广泛用于自然语言处理、图像识别和语音识别。
  • 线性回归: 这种技术对于预测数值很有价值,比如预测航班或房地产价格。
  • 逻辑回归: 这种方法通常使用二元分类模型(如“是/否”)来标记或分类某物。该技术的一个常见用途是识别电子邮件中的垃圾邮件,并将不需要的代码或恶意软件列入黑名单。
  • 聚类: 这个机器学习工具使用无监督学习来发现人类可能忽略的模式。集群的一个例子是供应商如何在不同的设施中执行相同的产品。这种方法可能用于医疗保健,例如,了解不同的生活方式如何影响健康和寿命。
  • 决策树: 该方法预测数值,但也执行分类功能。与其他形式的机器学习不同,其提供了一种清晰的方法来审核结果。这种方法也适用于结合决策树的随机森林。

无论使用哪种确切方法,机器学习越来越多地被企业用于更好地理解数据并做出决策。这反过来又为更复杂的人工智能和自动化提供了条件。例如,情感分析可以插入销售历史数据、社交媒体数据甚至天气状况,以动态调整生产、营销、定价和销售策略。其他机器学习应用程序提供了用于医疗诊断的推荐引擎、欺诈检测和图像分类。

机器学习的优势之一是,其可以随着条件和数据的变化或组织添加更多的数据而动态适应。因此,可以构建一个ML模型,然后动态调整。例如,营销人员可能会根据客户的行为和兴趣开发一种算法,然后根据客户的行为、兴趣或购买模式的改变来调整信息和内容。

人工智能和机器学习如何在企业中发展?

如前所述,大多数软件供应商——涵盖广泛的企业应用程序范围——在其产品中提供AI和ML。这些系统使得在没有广泛的数据科学知识的情况下使用强大的工具变得越来越简单。

不过,也有一些需要注意的地方。对于客户来说,为了充分利用AI和ML系统,了解AI和一些专业知识往往是必要的。在选择产品时,避免供应商炒作也是至关重要的。AI和ML无法解决潜在的业务问题——在某些情况下,它们会产生新的挑战、担忧和问题。

有哪些道德和法律问题?

AI和ML正处于一场日益激烈的争论的中心——它们应该被明智地、谨慎地使用。它们与招聘和保险偏见、种族歧视以及各种其他问题有关,包括滥用数据、不适当的监控以及深度造假、虚假新闻和信息等问题。

越来越多的证据表明,面部识别系统在识别有色人种时的准确性要低得多,这可能导致种族定性。此外,人们越来越担心政府和其他实体使用面部识别进行大规模监控。到目前为止,对人工智能实践的监管还很少。然此,道德人工智能正在成为一个关键考虑因素。

人工智能和机器学习的未来是什么?

人工智能技术正在迅速发展,其将在企业和人们的生活中发挥越来越重要的作用。AI和ML工具可以显着降低成本、提高生产力,促进自动化,并推动创新和业务转型。

随着数字化转型的推进,各种形式的AI将成为各种数字技术围绕的太阳。人工智能将催生更先进的自然语音系统、机器视觉工具、自主技术等等。

以上是AI vs ML:人工智能和机器学习概述的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles