解决人工智能瓶颈 推动外卖行业发展
近年来,随着消费互联网迈向纵深,产业互联网渐入佳境,各行各业的数字化转型如火如荼。面对日趋复杂的环境,具备强大市场渗透力的数字化与智能化技术协同共进,在推动经济发展、赋能小微企业、保障民生等领域将发挥巨大作用。在新兴技术阵营中,人工智能释放的红利正让人们的生活变得更加美好。
以日常“点外卖”为例,骑手、用户和商家分别构成就业、民生、经济的缩影,如果人工智能可以实现对这三大群体的赋能,就可以满足不同场景下的配送需求,提升配送效率和用户体验,从而实现“让外卖触达世界每个角落”的愿景。而人工智能之所以能发挥作用,离不开ICT基础架构的升级与深度学习框架的跃迁。
科技力量改变外卖生态
一份外卖在30分钟内送达,已成为生活常态。但是,做到这一点并不简单:以一个骑手送5份订单为例,就要面向5个不同的商家和用户,配送路线的组合达到上万种。而在热门的外卖平台上,高峰期外卖日订单量巨大,涉及骑手人数也众多,实现30分钟送达的目标,路线组合更是天文数字。同时,对于老年人和儿童用户来说,能通过语音操作无障碍完成点外卖的全部流程,就更凸现了人性化设计。
据美团方面介绍,该公司的“技术助力生活”项目,其中一项重要工作就是寻求骑手调度的最优解。1万多名工程师在用人工智能技术提高效率的同时,通过定期做骑手来体验送餐过程中的痛点,不断优化解决方案。此外,该公司结合“智能交互”技术打造的服务引擎,具备语音能力,能让老年人和儿童以便捷的交流方式获取服务。尤其当用户的需求送达公司的“超脑系统”后,这一大规模、高复杂度的多人多点实时智能配送调度系统,将会进行快速计算,让用户获得超预期的服务体验。而从2016年起,美团就依托更多智能化技术,开始研发特定场景下的无人配送,在疫情防控期间得到检验并取得进展。
在整个外卖生态中,商户群体是美团赋能的另一核心领域。据悉,在“美团商家大脑”中,有海量的用户评价分析和知识关联,商家只需要一个SaaS收银系统专业版,就能定期获取用户的情感曲线变化、消费水平、环境偏好及相似商家等信息。同时,借助智能分析,商家还可以在服务现状、竞争力、商圈等层面得到洞察,为从开店到店面运营管理提供决策参考。
面对难题提供解决路径
据介绍,外卖只是美团构建生活服务整体生态图景的一部分,科技赋能所涉及的纷繁场景远不止于此。近年来,美团组建了强大的人工智能技术团队,为商家选址、引流、外卖配送、经营管理、供应链金融、营销推广等一整套服务体系提供了强大的AI能力支撑。但随着用户快速增长、智能业务不断升级,以及AI模型规模与复杂度持续上升,该公司的业务系统面临愈发严峻的性能挑战,如何从基础设施重构、软件优化等角度化解挑战,是其必须面对的问题。
以开源深度学习框架TensorFlow的应用为例:美团在英特尔可扩展处理器的基础上,从多维度进行深度改进,并采用了该公司推荐的技术优化方案。为进一步给推荐系统等应用进行AI赋能,美团使用TensorFlow进行模型训练,采取分布式计算方式解决海量参数的模型计算和参数更新问题。但随着业务高速发展,不仅推荐系统模型的规模和复杂度也有所提升。还会暴露出一系列问题。性能瓶颈的凸显,会带来总体拥有成本的飙升,可能对上层业务造成负面影响。
为了解决性能瓶颈问题,有两条路径可供选择:一条是迅速扩大基础设施建设规模,但会增加成本压力,并提升系统的整体复杂度;另一条是从系统与软件层面进行优化,具备更高的经济性与可行性。经过对TensorFlow框架与业务的分析定位,美团发现业务中的TensorFlow集群均衡负载与分布式集群的通信机制、延迟、单实例性能,都是亟需重点优化的方向,与英特尔合作探索第二条路径势在必行。明确方向后,美团将TensorFlow系统构建在基于英特尔可扩展处理器的服务器集群上,并采用CPU进行TensorFlow模型训练,在推荐系统场景中还使用了TensorFlow PS异步训练模式,支持业务分布式训练需求。
据了解,美团从单实例性能、分布式计算优化等多层面进行了全方位实践。新系统在支持能力层面,可做到千亿参数模型、上千Worker分布式训练的近线性加速、全年样本在1天内完成训练,并支持在线深度学习的能力;各种架构和接口也更友好,得到了美团业务部门的认可。
以上是解决人工智能瓶颈 推动外卖行业发展的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」 。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。 AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显着提高。这表明,在单个统一的深度学习框架内,可以实现

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
