目录
不需要成为人工智能专家
人工智能驱动的工作流程
1.数据准备
2.人工智能建模
3.模拟和测试
4.部署
首页 科技周边 人工智能 人工智能在制造业成功应用的四个步骤

人工智能在制造业成功应用的四个步骤

Apr 09, 2023 pm 03:01 PM
人工智能 数据 制造业

制造商可以在多种方面受益于人工智能,如提高生产、质量控制和效率。尽管人工智能为制造商提供了几种新的应用,但为了获得最大的价值,企业必须在整个制造过程中使用它。

人工智能在制造业成功应用的四个步骤

这意味着制造工程师需要专注于人工智能数据准备、建模、仿真和测试以及部署的四个关键方面,以成功地在不间断的制造过程中使用人工智能。

不需要成为人工智能专家

工程师们可能认为开发人工智能模型需要相当长的时间,但事实往往并非如此。建模是工作流过程中的一个重要步骤,但不是最终目标。要成功使用人工智能,关键是在流程一开始就确定任何问题。这让工程师知道工作流的哪些方面需要投入时间和资源以获得最佳结果。

在讨论工作流时,有两点需要考虑:

制造系统庞大而复杂,人工智能只是其中的一部分。因此,AI需要在所有场景下与生产线上的所有其他工作部件一起工作。其中一部分是使用工业通信协议,如OPCUA,以及其他机器软件,如控制、监控逻辑和人机界面,从设备上的传感器收集数据。

在这种情况下,工程师在融入AI时就已经为成功做好了准备,因为他们已经了解设备,且不管他们是否拥有丰富的AI经验。换句话说,如果他们不是人工智能专家,仍然可以利用其的专业知识成功地将AI添加到工作流程中。

人工智能驱动的工作流程

构建人工智能驱动的工作流程需要4个步骤:

1.数据准备

当没有良好的数据来训练AI模型时,项目更有可能失败。因此,数据准备至关重要。错误的数据可能会让工程师浪费时间去弄清楚为什么这个模型行不通。

训练模型通常是最耗时的步骤,但也是重要的步骤。工程师们应该从尽可能干净、有标签的数据开始,专注于输入模型的数据,而不是专注于改进模型。

例如,工程师应该专注于预处理和确保输入模型的数据被正确标记,而不是调整参数和微调模型。这可以确保模型理解和处理数据。

另一个挑战是机器操作员和机器制造商之间的差异。前者通常可以访问设备的操作,而后者需要这些数据来训练AI模型。为了确保机器制造商与机器操作员(即他们的客户)共享数据,双方应该制定协议和商业模式来管理这种共享。

建筑设备制造商Caterpillar提供了一个很好的例子来说明数据准备的重要性。其收集了大量的现场数据,虽然这对精确的AI建模是必要的,但这意味着需要大量的时间来进行数据清洗和标记。该公司成功地利用MATLAB简化了这一过程。它可以帮助该公司开发干净、有标签的数据,然后将这些数据输入机器学习模型,利用现场机械的强大洞察力。此外,对于拥有领域专业知识但不是人工智能专家的用户,该过程是可伸缩的和灵活的。

2.人工智能建模

这个阶段在数据清理并正确标记后开始。实际上,就是模型从数据中学习的时候。当工程师们有了一个准确而可靠的模型,可以根据输入做出智能决策时,就知道他们已经进入了一个成功的建模阶段。这个阶段还需要工程师使用机器学习、深度学习或两者结合来决定哪个结果最准确。

在建模阶段,无论使用深度学习还是机器学习模型,重要的是能够访问人工智能工作流的几种算法,如分类、预测和回归。作为一个起点,由更广泛的社区创建的各种预构建模型可能是有帮助的。工程师也可以使用灵活的工具,如MATLAB和Simulink。

值得注意的是,尽管算法和预先构建的模型是一个很好的开始,但工程师应该通过使用其领域内其他人的算法和示例,找到最有效的路径来实现他们的特定目标。这就是为什么MATLAB提供了数百个不同的例子来构建跨越多个领域的AI模型。

此外,还需考虑的另一个方面是,跟踪更改和记录训练迭代是至关重要的。像实验管理器此类工具可以通过解释导致最准确的模型和可重复的结果的参数来帮助实现这一点。

3.模拟和测试

这一步确保AI模型正确工作。人工智能模型作为一个更大系统的一部分,需要与系统中的各个部分一起工作。例如,在制造业中,AI模型可能支持预测性维护、动态轨迹规划或视觉质量检查。

其余的机器软件包括控制、监控逻辑和其他组件。模拟和测试让工程师知道,模型的一部分按照预期工作,包括自身工作和与其他系统一起工作。只有当能够证明模型按预期工作,并且具有足够的有效性来降低风险时,该模型才能在现实世界中使用。

无论在什么情况下,模型都必须以其应该的方式做出响应。在使用模型之前,工程师应该在这个阶段了解几个问题:

  • 模型的准确度高吗?
  • 每个场景中,模型是否按照预期执行?
  • 所有边缘情况都被覆盖了吗?

像Simulink这类的工具可以让工程师在设备上使用之前,检查模型是否按预期情况运行。这有助于避免在重新设计上花费时间和金钱。这些工具还通过成功地模拟和测试模型的预期案例,并确认满足预期目标,从而帮助建立高度信任。

4.部署

一旦准备好部署,下一步就是用其将使用的语言准备好模型。为此,工程师通常需要共享一个现成的模型。这让模型适合指定的控制硬件环境,如嵌入式控制器、PLC或边缘设备。MATLAB等灵活的工具通常可以在任何类型的场景中生成最终代码,为工程师提供了在不同硬件供应商的许多不同环境中部署模型的能力。他们可以做到这一点,而无需重新编写原始代码。

例如,当将模型直接部署到PLC时,自动代码生成消除了手工编程过程中可能包含的编码错误。这也提供了优化的C/c 或IEC61131代码,将有效地运行在主要供应商的PLC上。

成功部署人工智能,并不需要数据科学家或人工智能专家。然而,有一些关键的资源可以帮助工程师和其的AI模型为成功做好准备。这包括为科学家和工程师制作的特定工具,将人工智能添加到工作流程中的应用程序和功能,各种不间断操作使用的部署选项,以及随时准备回答AI相关问题的专家。给工程师提供正确的资源来帮助成功添加人工智能,将让他们交付最好的结果。

以上是人工智能在制造业成功应用的四个步骤的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! Jun 08, 2024 pm 01:00 PM

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles